ÿØÿà JFIF    ÿÛ „  ( %"1!%)+...383,7(-.+  -+++--++++---+-+-----+---------------+---+-++7-----ÿÀ  ß â" ÿÄ     ÿÄ H    !1AQaq"‘¡2B±ÁÑð#R“Ò Tbr‚²á3csƒ’ÂñDS¢³$CÿÄ   ÿÄ %  !1AQa"23‘ÿÚ   ? ôÿ ¨pŸªáÿ —åYõõ\?àÒü©ŠÄï¨pŸªáÿ —åYõõ\?àÓü©ŠÄá 0Ÿªáÿ Ÿå[úƒ ú®ði~TÁbqÐ8OÕpÿ ƒOò¤Oè`–RÂáœá™êi€ßÉ< FtŸI“öÌ8úDf´°å}“¾œ6  öFá°y¥jñÇh†ˆ¢ã/ÃÐ:ªcÈ "Y¡ðÑl>ÿ ”ÏËte:qž\oäŠe÷󲍷˜HT4&ÿ ÓÐü6ö®¿øþßèô Ÿ•7Ñi’•j|“ñì>b…þS?*Óôÿ ÓÐü*h¥£ír¶ü UãS炟[AÐaè[ûª•õ&õj?†Éö+EzP—WeÒírJFt ‘BŒ†Ï‡%#tE Øz ¥OÛ«!1›üä±Í™%ºÍãö]°î(–:@<‹ŒÊö×òÆt¦ãº+‡¦%ÌÁ²h´OƒJŒtMÜ>ÀÜÊw3Y´•牋4ǍýʏTì>œú=Íwhyë,¾Ôò×õ¿ßÊa»«þˆѪQ|%6ž™A õ%:øj<>É—ÿ Å_ˆCbõ¥š±ý¯Ýƒï…¶|RëócÍf溪“t.СøTÿ *Ä¿-{†çàczůŽ_–^XþŒ±miB[X±d 1,é”zEù»& î9gœf™9Ð'.;—™i}!ôšåîqêÛ٤ёý£½ÆA–àôe"A$˝Úsäÿ ÷Û #°xŸëí(l »ý3—¥5m! rt`†0~'j2(]S¦¦kv,ÚÇ l¦øJA£Šƒ J3E8ÙiŽ:cÉžúeZ°€¯\®kÖ(79«Ž:¯X”¾³Š&¡* ….‰Ž(ÜíŸ2¥ª‡×Hi²TF¤ò[¨íÈRëÉ䢍mgÑ.Ÿ<öäS0í„ǹÁU´f#Vß;Õ–…P@3ío<ä-±»Ž.L|kªÀê›fÂ6@»eu‚|ÓaÞÆŸ…¨ááå>åŠ?cKü6ùTÍÆ”†sĤÚ;H2RÚ†õ\Ö·Ÿn'¾ ñ#ºI¤Å´%çÁ­‚â7›‹qT3Iï¨ÖÚ5I7Ë!ÅOóŸ¶øÝñØôת¦$Tcö‘[«Ö³šÒ';Aþ ¸èíg A2Z"i¸vdÄ÷.iõ®§)¿]¤À†–‡É&ä{V¶iŽ”.Ó×Õÿ û?h¬Mt–íª[ÿ Ñÿ ÌV(í}=ibÔ¡›¥¢±b Lô¥‡piη_Z<‡z§èŒ)iÖwiÇ 2hÙ3·=’d÷8éŽ1¦¸c¤µ€7›7Ø ð\á)} ¹fËí›pAÃL%âc2 í§æQz¿;T8sæ°qø)QFMð‰XŒÂ±N¢aF¨…8¯!U  Z©RÊ ÖPVÄÀÍin™Ì-GˆªÅËŠ›•zË}º±ŽÍFò¹}Uw×#ä5B¤{î}Ð<ÙD é©¤&‡ïDbàÁôMÁ." ¤‡ú*õ'VŽ|¼´Úgllº¼klz[Æüï÷Aób‡Eÿ dÑ»Xx9ÃÜ£ÁT/`¼¸vI±Ýµ·Ë‚“G³þ*Ÿû´r|*}<¨îºœ @¦mÄ’M¹”.œ«Y–|6ÏU¤jç¥ÕÞqO ˜kDÆÁ¨5ÿ š;ÐЦ¦€GÙk \ –Þ=â¼=SͧµªS°ÚÍpÜãQűÀõ¬?ÃÁ1Ñ•õZà?hóœ€ L¦l{Y*K˜Ù›zc˜–ˆâ ø+¾ ­-Ök¥%ùEÜA'}ˆ><ÊIè“bpÍ/qÞâvoX€w,\úªò6Z[XdÒæ­@Ö—€$òJí#é>'°Ú ôª˜<)4ryÙ£|óAÅn5žêŸyÒäMÝ2{"}‰–¤l÷ûWX\l¾Á¸góÉOÔ /óñB¤f¸çñ[.P˜ZsÊË*ßT܈§QN¢’¡¨§V¼(Üù*eÕ“”5T¨‹Âê¥FŒã½Dü[8'Ò¥a…Ú¶k7a *•›¼'Ò·\8¨ª\@\õ¢¦íq+DÙrmÎ…_ªæ»ŠÓœ¡¯’Ré9MÅ×D™lælffc+ŒÑ,ý™ÿ ¯þǤ=Å’Á7µ÷ÚÛ/“Ü€ñýã¼àí¾ÕÑ+ƒ,uµMâÀÄbm:ÒÎPæ{˜Gz[ƒ¯«® KHà`ߨŠéí¯P8Aq.C‰ à€kòpj´kN¶qô€…Õ,ÜNŠª-­{Zö’æû44‰sŽè‰îVíRœÕm" 6?³D9¡ÇTíÅꋇ`4«¸ÝÁô ï’ýorqКÇZ«x4Žâéþuïf¹µö[P ,Q£éaX±`PÉÍZ ¸äYúg üAx ’6Lê‚xÝÓ*äQ  Ï’¨hÍ =²,6ï#rÃ<¯–£»ƒ‹,–ê•€ aÛsñ'%Æ"®ÛüìBᝠHÚ3ß°©$“XnœÖ’î2ËTeûìxîß ¦å¿çÉ ðK§þ{‘t‚Ϋ¬jéîZ[ ”š7L¥4VÚCE×]m¤Øy”ä4-dz£œ§¸x.*ãÊÊ b÷•h:©‡¦s`BTÁRû¾g⻩‹jø sF¢àJøFl‘È•Xᓁà~*j¯ +(ÚÕ6-£¯÷GŠØy‚<Ç’.F‹Hœw(+)ÜÜâÈzÄäT§FߘãÏ;DmVœ3Àu@mÚüXÝü•3B¨òÌÁÛ<·ÃÜ z,Ì@õÅ·d2]ü8s÷IôÞ¯^Ç9¢u„~ëAŸï4«M? K]­ÅàPl@s_ p:°¬ZR”´›JC[CS.h‹ƒïËœ«Æ]–÷ó‚wR×k7X‰k›‘´ù¦=¡«‰¨¨Â')—71ó’c‡Ðúµ `é.{§p¹ój\Ž{1h{o±Ý=áUÊïGÖŒõ–-BÄm+AZX¶¡ ïHðæ¥JmÙ;…䡟ˆ¦ ° äšiÉg«$üMk5¤L“’çÊvïâï ,=f“"íἊ5ô¬x6{ɏžID0e¸vçmi'︧ºð9$ò¹÷*£’9ÿ ²TÔ…×>JV¥}Œ}$p[bÔ®*[jzS*8 ”·T›Í–ñUîƒwo$áè=LT™ç—~ô·¤ÈÚ$榍q‰„+´kFm)ž‹©i–ËqÞŠ‰à¶ü( ‚•§ •°ò·‡#5ª•µÊ﯅¡X¨šÁ*F#TXJÊ ušJVÍ&=iÄs1‚3•'fý§5Ñ<=[íÞ­ PÚ;ѱÌ_~Ä££8rÞ ²w;’hDT°>ÈG¬8Á²ÚzŽ®ò®qZcqJêäÞ-ö[ܘbň±çb“ж31²n×iƒðÕ;1¶þÉ ªX‰,ßqÏ$>•î íZ¥Z 1{ç൵+ƒÕµ¥°T$§K]á»Ûï*·¤tMI’ÂZbŽÕiÒ˜}bÓ0£ª5›¨ [5Ž^ÝœWøÂÝh° ¢OWun£¤5 a2Z.G2³YL]jåtì”ä ÁÓ‘%"©<Ôúʰsº UZvä‡ÄiÆÒM .÷V·™ø#kèýiíÌ–ª)µT[)BˆõÑ xB¾B€ÖT¨.¥~ð@VĶr#¸ü*åZNDŽH;âi ],©£öØpù(šºãö¼T.uCê•4@ÿ GÕÛ)Cx›®0ø#:ÏðFÒbR\(€€Ä®fã4Þ‰Fä¯HXƒÅ,†öEÑÔÜ]Öv²?tLÃvBY£ú6Êu5ÅAQ³1‘’¬x–HŒÐ‡ ^ ¸KwJôÖŽ5×CÚ¨vÜ«/B0$×k°=ðbÇ(Ï)w±A†Á† 11Í=èQšµ626ŒÜ/`G«µ<}—-Ö7KEHÈÉðóȤmݱû±·ø«Snmá=“䫚mݱŸ¡¶~ó·“äUóJæúòB|E LêŽy´jDÔ$G¢þÐñ7óR8ýÒ…Ç› WVe#·Ÿ p·Fx~•ݤF÷0Èÿ K¯æS<6’¡WШ; ´ÿ ¥Êø\Òuî†åÝ–VNœkÒ7oòX¨Á­Ø÷FÎÑä±g÷ÿ M~Çî=p,X´ ÝÌÚÅ‹’ÃjÖ.ØöÏñ qïQ¤ÓZE†° =6·]܈ s¸>v•Ž^Ý\wq9r‰Î\¸¡kURÒ$­*‹Nq?Þª*!sŠÆ:TU_u±T+øX¡ ®¹¡,ÄâÃBTsÜ$Ø›4m椴zÜK]’’›Pƒ @€#â˜`é¹=I‡fiV•Ôî“nRm+µFPOhÍ0B£ €+¬5c v•:P'ÒyÎ ‰V~‚Ó†ÖuókDoh$å\*ö%Ю=£«…aȼ½÷Û.-½VŒŠ¼'lyî±1¬3ó#ÞE¿ÔS¤gV£m›=§\û"—WU¤ÚǼÿ ÂnÁGŒÃ ‚õN D³õNÚíŒÕ;HôyÄÈ©P¹Ä{:?R‘Ô¨âF÷ø£bÅó® JS|‚R÷ivýáâ€Æé¡è³´IئÑT!§˜•ت‚¬â@q€wnïCWÄ@JU€ê¯m6]Ï:£âx'+ÒðXvÓ¦Úm=–´7œ $ì“B£~p%ÕŸUþ« N@¼üï~w˜ñø5®—'Ôe»¤5ã//€ž~‰Tþ›Å7•#¤× Íö pÄ$ùeåì*«ÓŠEØWEÈsßg ¦ûvžSsLpºÊW–âµEWöˬH; ™!CYõZ ÃÄf æ#1W. \uWâ\,\Çf j’<qTbên›Î[vxx£ë 'ö¨1›˜ÀM¼Pÿ H)ƒêêŒA7s,|F“ 꺸k³9Ìö*ç®;Ö!Ö$Eiž•¹ÒÚ†ýóéÝû¾ÕS®ó$’NÝäŸz¤5r¦ãÄÃD÷Üø!°ø‡Ô&@m™Ì^Ãä­d q5Lnÿ N;.6½·N|#ä"1Nƒx“ã<3('&ñßt  ~ªu”1Tb㫨9ê–›–bìd$ߣ=#ÕãÒmU¯eí$EFù5ýYô櫨æì™Ç—±ssM]·á¿0ÕåJRÓªîiƒ+O58ÖñªŠÒx" \µâá¨i’¤i —Ö ” M+M¤ë9‚‰A¦°Qõ¾ßøK~¼Ã‘g…Ö´~÷Ï[3GUœÒ½#…kàÔ®Ò”‰³·dWV‰IP‰Ú8u¹”E ÖqLj¾êÕCBš{A^Âß;–¨`¯¬ìö ˼ ×tìø.tƐm*n¨y4o&Àx¥n¦×î‡aupáÛj8¿m›è¶ã!o½;ß0y^ý×^EÑ¿ÒjzŒ­)vÚÑnÄL …^ªô× ‡—‚3k Îý­hï]içå–îÏ*÷ñþ»Ô CÒjøjÍznˆ´ ¹#b'Fô‹ ‰v¥'’à'T´ƒHýÍ%M‰ ƒ&ÆÇŒï1 ‘ –Þ ‰i¬s žR-Ÿ kЬá¬7:þ 0ŒÅÒÕ/aÙ¬ÃÝ#Úøœ ©aiVc‰. ¹¦ãµ” ›Yg¦›ÆÎýº°f³7ƒhá·¸­}&D9¡ÂsÉÙÞèŠõØàC™¨ñbFC|´Ü(ŸƒÚÒ-%»'a Ì¿)ËÇn¿úÿ ÞŽX…4ÊÅH^ôΑí@ù¹Eh¶“L8Çjù ¼ÎåVªóR©Ï5uà V4lZß®=€xÖŸ–ÑÈ ÷”¨°¾__yM1tÉ?uÆþIkÄgæ@þ[¢†°XÃJ£j·:nkÅ¢u ‘}âGzö­/IµèЬ¼48q¦F°ŽR¼=ûì{´¯RýicS ÕÛ íNtÍÙï£,w4rêì®»~x(©Uñ§#Ñ&œÕ¤>ÎåÍÓ9’Ö{9eV­[Öjâ²ãu]˜å2›qÑšÕJç0€sÄ|Êëè0튔bÁ>“{×_F`Ø©ºê:µä,v¤ðfc1±"«ÔÍän1#=· Âøv~H½ÐßA¾¿Ü€Óš]Õ; I¾÷ç‚Qi†î¹9ywÔKG˜áñ zQY—§ÃÕZ07§X‚ Áh;ÁM)iÌCH-¯T‘ë|A0{Ò½LÚ–TâÖkÜ’dÀ“rmm»”جPF³ÖcbE§T€ÒxKºû’Ó®7±²(\4ŽÃ¸Uu@j™yĵ;³µ!Á¢b.W¤=mõ´êµK k ¸K^ÜÛ#p*Ü14qkZç5ïë †°5Ï%ÍÛ<Õ¤×Ô¥ê†C Õ´¼ú$ƒÖ“”]Ù¬qÞÚ[4©ý!ûÏ—Áb쳐XµA¬â~`›Çr¸8ìùÝ䫦<>ä÷«?xs´ÇÑ /á;¹øüÊÈÙà{"@Žïzâ¬[âß‚ U_<ÇŸ½4èN˜ú61®qŠu ¦þF£»äJ_ˆÙÎ~ ÞAã–݄ϗrŠD;xTž‘ô`É«…suãO`?³à™ô Lý#Íc5öoæØ‚y´´÷«ZR§<&JÇ+éâô´€i!Àˆ0æAoàðLèÖ-2ŸõW.’t^–(KÁmHµV@xÜÇy®Ñø­â^:Ú3w· 7½¹°ñ¸â¹®:',«Mœ—n­Á+Ãbš LÈ‘ÄnRÓÅœ%¦²‰¨ùQ:¤f‚ "PÕtô¸…cæl…&˜Ú˜Ôkv‹ž+vŠ,=¢v­6—Xy*¥t£«<™:“aîϲ=¦6rO]XI¿Œ÷¤zÚ­›¶ 6÷”w\d ü~v®ˆÌk«^m<ÿ ¢‰Õ\)ùºŽ;… lîÙÅEŠ®cѾ@vnMÏ,¼“ñ•ŽBxðÃzãÇç%3ˆ"}Ù•Åî> BÉú;Ò]V+P˜F_´ßé> Øše|ï‡ÄOmFæÇ ãqÞ$/xÐx­z`ï9"œÜij‚!7.\Td…9M‡•iŽ‹¾‘50ÞŽn¥ß4ÉôO ¹*í^QêËÜÇÌ8=ާs‰'ÂëÙ«á%Pú[O †ÅP¯Vsް.‰,kc¶ ¬A9n˜XÎ-ÞšN["¹QÕ‰ƒMýÁߺXJæÍaLj¾×Ãmã¾ãÚ uñÒþåQô¦¥ /ÄUx:‚ÍÜ’ Đ©ØÝ3V¨‰ÕnÐ6ó*óúK­«…c ¯U òhsý­jóÔj#,ímŒRµ«lbïUTŒÑ8†Ä0œÏr`ð¡¬É Ї ë"À² ™ 6¥ f¶ ¢ÚoܱԷ-<Àî)†a¶ž'Ú»¨TXqØæ¶÷YÄHy˜9ÈIW­YÀuMFë ºÏ’AqÌ4·/Ú †ô'i$øä­=Ä Ý|öK×40è|È6p‘0§)o¥ctî§H+CA-“ xØ|ÐXАç l8íºð3Ø:³¤¬KX¯UÿÙ 'use strict'; var regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/, regTransformSplit = /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/, regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g; /** * Convert transform string to JS representation. * * @param {String} transformString input string * @param {Object} params plugin params * @return {Array} output array */ exports.transform2js = function(transformString) { // JS representation of the transform data var transforms = [], // current transform context current; // split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', ''] transformString.split(regTransformSplit).forEach(function(item) { /*jshint -W084 */ var num; if (item) { // if item is a translate function if (regTransformTypes.test(item)) { // then collect it and change current context transforms.push(current = { name: item }); // else if item is data } else { // then split it into [10, 50] and collect as context.data while (num = regNumericValues.exec(item)) { num = Number(num); if (current.data) current.data.push(num); else current.data = [num]; } } } }); // return empty array if broken transform (no data) return current && current.data ? transforms : []; }; /** * Multiply transforms into one. * * @param {Array} input transforms array * @return {Array} output matrix array */ exports.transformsMultiply = function(transforms) { // convert transforms objects to the matrices transforms = transforms.map(function(transform) { if (transform.name === 'matrix') { return transform.data; } return transformToMatrix(transform); }); // multiply all matrices into one transforms = { name: 'matrix', data: transforms.length > 0 ? transforms.reduce(multiplyTransformMatrices) : [] }; return transforms; }; /** * Do math like a schoolgirl. * * @type {Object} */ var mth = exports.mth = { rad: function(deg) { return deg * Math.PI / 180; }, deg: function(rad) { return rad * 180 / Math.PI; }, cos: function(deg) { return Math.cos(this.rad(deg)); }, acos: function(val, floatPrecision) { return +(this.deg(Math.acos(val)).toFixed(floatPrecision)); }, sin: function(deg) { return Math.sin(this.rad(deg)); }, asin: function(val, floatPrecision) { return +(this.deg(Math.asin(val)).toFixed(floatPrecision)); }, tan: function(deg) { return Math.tan(this.rad(deg)); }, atan: function(val, floatPrecision) { return +(this.deg(Math.atan(val)).toFixed(floatPrecision)); } }; /** * Decompose matrix into simple transforms. See * http://frederic-wang.fr/decomposition-of-2d-transform-matrices.html * * @param {Object} data matrix transform object * @return {Object|Array} transforms array or original transform object */ exports.matrixToTransform = function(transform, params) { var floatPrecision = params.floatPrecision, data = transform.data, transforms = [], sx = +Math.hypot(data[0], data[1]).toFixed(params.transformPrecision), sy = +((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(params.transformPrecision), colsSum = data[0] * data[2] + data[1] * data[3], rowsSum = data[0] * data[1] + data[2] * data[3], scaleBefore = rowsSum != 0 || sx == sy; // [..., ..., ..., ..., tx, ty] → translate(tx, ty) if (data[4] || data[5]) { transforms.push({ name: 'translate', data: data.slice(4, data[5] ? 6 : 5) }); } // [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy) if (!data[1] && data[2]) { transforms.push({ name: 'skewX', data: [mth.atan(data[2] / sy, floatPrecision)] }); // [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy) } else if (data[1] && !data[2]) { transforms.push({ name: 'skewY', data: [mth.atan(data[1] / data[0], floatPrecision)] }); sx = data[0]; sy = data[3]; // [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or // [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore) } else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) { if (!scaleBefore) { sx = (data[0] < 0 ? -1 : 1) * Math.hypot(data[0], data[2]); sy = (data[3] < 0 ? -1 : 1) * Math.hypot(data[1], data[3]); transforms.push({ name: 'scale', data: [sx, sy] }); } var angle = Math.min(Math.max(-1, data[0] / sx), 1), rotate = [mth.acos(angle, floatPrecision) * ((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1)]; if (rotate[0]) transforms.push({ name: 'rotate', data: rotate }); if (rowsSum && colsSum) transforms.push({ name: 'skewX', data: [mth.atan(colsSum / (sx * sx), floatPrecision)] }); // rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point) if (rotate[0] && (data[4] || data[5])) { transforms.shift(); var cos = data[0] / sx, sin = data[1] / (scaleBefore ? sx : sy), x = data[4] * (scaleBefore || sy), y = data[5] * (scaleBefore || sx), denom = (Math.pow(1 - cos, 2) + Math.pow(sin, 2)) * (scaleBefore || sx * sy); rotate.push(((1 - cos) * x - sin * y) / denom); rotate.push(((1 - cos) * y + sin * x) / denom); } // Too many transformations, return original matrix if it isn't just a scale/translate } else if (data[1] || data[2]) { return transform; } if (scaleBefore && (sx != 1 || sy != 1) || !transforms.length) transforms.push({ name: 'scale', data: sx == sy ? [sx] : [sx, sy] }); return transforms; }; /** * Convert transform to the matrix data. * * @param {Object} transform transform object * @return {Array} matrix data */ function transformToMatrix(transform) { if (transform.name === 'matrix') return transform.data; var matrix; switch (transform.name) { case 'translate': // [1, 0, 0, 1, tx, ty] matrix = [1, 0, 0, 1, transform.data[0], transform.data[1] || 0]; break; case 'scale': // [sx, 0, 0, sy, 0, 0] matrix = [transform.data[0], 0, 0, transform.data[1] || transform.data[0], 0, 0]; break; case 'rotate': // [cos(a), sin(a), -sin(a), cos(a), x, y] var cos = mth.cos(transform.data[0]), sin = mth.sin(transform.data[0]), cx = transform.data[1] || 0, cy = transform.data[2] || 0; matrix = [cos, sin, -sin, cos, (1 - cos) * cx + sin * cy, (1 - cos) * cy - sin * cx]; break; case 'skewX': // [1, 0, tan(a), 1, 0, 0] matrix = [1, 0, mth.tan(transform.data[0]), 1, 0, 0]; break; case 'skewY': // [1, tan(a), 0, 1, 0, 0] matrix = [1, mth.tan(transform.data[0]), 0, 1, 0, 0]; break; } return matrix; } /** * Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it * by the transformation matrix and use a singular value decomposition to represent in a form * rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ. * SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}}) * * @param {Array} arc [a, b, rotation in deg] * @param {Array} transform transformation matrix * @return {Array} arc transformed input arc */ exports.transformArc = function(arc, transform) { var a = arc[0], b = arc[1], rot = arc[2] * Math.PI / 180, cos = Math.cos(rot), sin = Math.sin(rot), h = Math.pow(arc[5] * cos + arc[6] * sin, 2) / (4 * a * a) + Math.pow(arc[6] * cos - arc[5] * sin, 2) / (4 * b * b); if (h > 1) { h = Math.sqrt(h); a *= h; b *= h; } var ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0], m = multiplyTransformMatrices(transform, ellipse), // Decompose the new ellipse matrix lastCol = m[2] * m[2] + m[3] * m[3], squareSum = m[0] * m[0] + m[1] * m[1] + lastCol, root = Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]); if (!root) { // circle arc[0] = arc[1] = Math.sqrt(squareSum / 2); arc[2] = 0; } else { var majorAxisSqr = (squareSum + root) / 2, minorAxisSqr = (squareSum - root) / 2, major = Math.abs(majorAxisSqr - lastCol) > 1e-6, sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol, rowsSum = m[0] * m[2] + m[1] * m[3], term1 = m[0] * sub + m[2] * rowsSum, term2 = m[1] * sub + m[3] * rowsSum; arc[0] = Math.sqrt(majorAxisSqr); arc[1] = Math.sqrt(minorAxisSqr); arc[2] = ((major ? term2 < 0 : term1 > 0) ? -1 : 1) * Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) * 180 / Math.PI; } if ((transform[0] < 0) !== (transform[3] < 0)) { // Flip the sweep flag if coordinates are being flipped horizontally XOR vertically arc[4] = 1 - arc[4]; } return arc; }; /** * Multiply transformation matrices. * * @param {Array} a matrix A data * @param {Array} b matrix B data * @return {Array} result */ function multiplyTransformMatrices(a, b) { return [ a[0] * b[0] + a[2] * b[1], a[1] * b[0] + a[3] * b[1], a[0] * b[2] + a[2] * b[3], a[1] * b[2] + a[3] * b[3], a[0] * b[4] + a[2] * b[5] + a[4], a[1] * b[4] + a[3] * b[5] + a[5] ]; }