ÿØÿà JFIF    ÿÛ „  ( %"1!%)+...383,7(-.+  -+++--++++---+-+-----+---------------+---+-++7-----ÿÀ  ß â" ÿÄ     ÿÄ H    !1AQaq"‘¡2B±ÁÑð#R“Ò Tbr‚²á3csƒ’ÂñDS¢³$CÿÄ   ÿÄ %  !1AQa"23‘ÿÚ   ? ôÿ ¨pŸªáÿ —åYõõ\?àÒü©ŠÄï¨pŸªáÿ —åYõõ\?àÓü©ŠÄá 0Ÿªáÿ Ÿå[úƒ ú®ði~TÁbqÐ8OÕpÿ ƒOò¤Oè`–RÂáœá™êi€ßÉ< FtŸI“öÌ8úDf´°å}“¾œ6  öFá°y¥jñÇh†ˆ¢ã/ÃÐ:ªcÈ "Y¡ðÑl>ÿ ”ÏËte:qž\oäŠe÷󲍷˜HT4&ÿ ÓÐü6ö®¿øþßèô Ÿ•7Ñi’•j|“ñì>b…þS?*Óôÿ ÓÐü*h¥£ír¶ü UãS炟[AÐaè[ûª•õ&õj?†Éö+EzP—WeÒírJFt ‘BŒ†Ï‡%#tE Øz ¥OÛ«!1›üä±Í™%ºÍãö]°î(–:@<‹ŒÊö×òÆt¦ãº+‡¦%ÌÁ²h´OƒJŒtMÜ>ÀÜÊw3Y´•牋4ǍýʏTì>œú=Íwhyë,¾Ôò×õ¿ßÊa»«þˆѪQ|%6ž™A õ%:øj<>É—ÿ Å_ˆCbõ¥š±ý¯Ýƒï…¶|RëócÍf溪“t.СøTÿ *Ä¿-{†çàczůŽ_–^XþŒ±miB[X±d 1,é”zEù»& î9gœf™9Ð'.;—™i}!ôšåîqêÛ٤ёý£½ÆA–àôe"A$˝Úsäÿ ÷Û #°xŸëí(l »ý3—¥5m! rt`†0~'j2(]S¦¦kv,ÚÇ l¦øJA£Šƒ J3E8ÙiŽ:cÉžúeZ°€¯\®kÖ(79«Ž:¯X”¾³Š&¡* ….‰Ž(ÜíŸ2¥ª‡×Hi²TF¤ò[¨íÈRëÉ䢍mgÑ.Ÿ<öäS0í„ǹÁU´f#Vß;Õ–…P@3ío<ä-±»Ž.L|kªÀê›fÂ6@»eu‚|ÓaÞÆŸ…¨ááå>åŠ?cKü6ùTÍÆ”†sĤÚ;H2RÚ†õ\Ö·Ÿn'¾ ñ#ºI¤Å´%çÁ­‚â7›‹qT3Iï¨ÖÚ5I7Ë!ÅOóŸ¶øÝñØôת¦$Tcö‘[«Ö³šÒ';Aþ ¸èíg A2Z"i¸vdÄ÷.iõ®§)¿]¤À†–‡É&ä{V¶iŽ”.Ó×Õÿ û?h¬Mt–íª[ÿ Ñÿ ÌV(í}=ibÔ¡›¥¢±b Lô¥‡piη_Z<‡z§èŒ)iÖwiÇ 2hÙ3·=’d÷8éŽ1¦¸c¤µ€7›7Ø ð\á)} ¹fËí›pAÃL%âc2 í§æQz¿;T8sæ°qø)QFMð‰XŒÂ±N¢aF¨…8¯!U  Z©RÊ ÖPVÄÀÍin™Ì-GˆªÅËŠ›•zË}º±ŽÍFò¹}Uw×#ä5B¤{î}Ð<ÙD é©¤&‡ïDbàÁôMÁ." ¤‡ú*õ'VŽ|¼´Úgllº¼klz[Æüï÷Aób‡Eÿ dÑ»Xx9ÃÜ£ÁT/`¼¸vI±Ýµ·Ë‚“G³þ*Ÿû´r|*}<¨îºœ @¦mÄ’M¹”.œ«Y–|6ÏU¤jç¥ÕÞqO ˜kDÆÁ¨5ÿ š;ÐЦ¦€GÙk \ –Þ=â¼=SͧµªS°ÚÍpÜãQűÀõ¬?ÃÁ1Ñ•õZà?hóœ€ L¦l{Y*K˜Ù›zc˜–ˆâ ø+¾ ­-Ök¥%ùEÜA'}ˆ><ÊIè“bpÍ/qÞâvoX€w,\úªò6Z[XdÒæ­@Ö—€$òJí#é>'°Ú ôª˜<)4ryÙ£|óAÅn5žêŸyÒäMÝ2{"}‰–¤l÷ûWX\l¾Á¸góÉOÔ /óñB¤f¸çñ[.P˜ZsÊË*ßT܈§QN¢’¡¨§V¼(Üù*eÕ“”5T¨‹Âê¥FŒã½Dü[8'Ò¥a…Ú¶k7a *•›¼'Ò·\8¨ª\@\õ¢¦íq+DÙrmÎ…_ªæ»ŠÓœ¡¯’Ré9MÅ×D™lælffc+ŒÑ,ý™ÿ ¯þǤ=Å’Á7µ÷ÚÛ/“Ü€ñýã¼àí¾ÕÑ+ƒ,uµMâÀÄbm:ÒÎPæ{˜Gz[ƒ¯«® KHà`ߨŠéí¯P8Aq.C‰ à€kòpj´kN¶qô€…Õ,ÜNŠª-­{Zö’æû44‰sŽè‰îVíRœÕm" 6?³D9¡ÇTíÅꋇ`4«¸ÝÁô ï’ýorqКÇZ«x4Žâéþuïf¹µö[P ,Q£éaX±`PÉÍZ ¸äYúg üAx ’6Lê‚xÝÓ*äQ  Ï’¨hÍ =²,6ï#rÃ<¯–£»ƒ‹,–ê•€ aÛsñ'%Æ"®ÛüìBᝠHÚ3ß°©$“XnœÖ’î2ËTeûìxîß ¦å¿çÉ ðK§þ{‘t‚Ϋ¬jéîZ[ ”š7L¥4VÚCE×]m¤Øy”ä4-dz£œ§¸x.*ãÊÊ b÷•h:©‡¦s`BTÁRû¾g⻩‹jø sF¢àJøFl‘È•Xᓁà~*j¯ +(ÚÕ6-£¯÷GŠØy‚<Ç’.F‹Hœw(+)ÜÜâÈzÄäT§FߘãÏ;DmVœ3Àu@mÚüXÝü•3B¨òÌÁÛ<·ÃÜ z,Ì@õÅ·d2]ü8s÷IôÞ¯^Ç9¢u„~ëAŸï4«M? K]­ÅàPl@s_ p:°¬ZR”´›JC[CS.h‹ƒïËœ«Æ]–÷ó‚wR×k7X‰k›‘´ù¦=¡«‰¨¨Â')—71ó’c‡Ðúµ `é.{§p¹ój\Ž{1h{o±Ý=áUÊïGÖŒõ–-BÄm+AZX¶¡ ïHðæ¥JmÙ;…䡟ˆ¦ ° äšiÉg«$üMk5¤L“’çÊvïâï ,=f“"íἊ5ô¬x6{ɏžID0e¸vçmi'︧ºð9$ò¹÷*£’9ÿ ²TÔ…×>JV¥}Œ}$p[bÔ®*[jzS*8 ”·T›Í–ñUîƒwo$áè=LT™ç—~ô·¤ÈÚ$榍q‰„+´kFm)ž‹©i–ËqÞŠ‰à¶ü( ‚•§ •°ò·‡#5ª•µÊ﯅¡X¨šÁ*F#TXJÊ ušJVÍ&=iÄs1‚3•'fý§5Ñ<=[íÞ­ PÚ;ѱÌ_~Ä££8rÞ ²w;’hDT°>ÈG¬8Á²ÚzŽ®ò®qZcqJêäÞ-ö[ܘbň±çb“ж31²n×iƒðÕ;1¶þÉ ªX‰,ßqÏ$>•î íZ¥Z 1{ç൵+ƒÕµ¥°T$§K]á»Ûï*·¤tMI’ÂZbŽÕiÒ˜}bÓ0£ª5›¨ [5Ž^ÝœWøÂÝh° ¢OWun£¤5 a2Z.G2³YL]jåtì”ä ÁÓ‘%"©<Ôúʰsº UZvä‡ÄiÆÒM .÷V·™ø#kèýiíÌ–ª)µT[)BˆõÑ xB¾B€ÖT¨.¥~ð@VĶr#¸ü*åZNDŽH;âi ],©£öØpù(šºãö¼T.uCê•4@ÿ GÕÛ)Cx›®0ø#:ÏðFÒbR\(€€Ä®fã4Þ‰Fä¯HXƒÅ,†öEÑÔÜ]Öv²?tLÃvBY£ú6Êu5ÅAQ³1‘’¬x–HŒÐ‡ ^ ¸KwJôÖŽ5×CÚ¨vÜ«/B0$×k°=ðbÇ(Ï)w±A†Á† 11Í=èQšµ626ŒÜ/`G«µ<}—-Ö7KEHÈÉðóȤmݱû±·ø«Snmá=“䫚mݱŸ¡¶~ó·“äUóJæúòB|E LêŽy´jDÔ$G¢þÐñ7óR8ýÒ…Ç› WVe#·Ÿ p·Fx~•ݤF÷0Èÿ K¯æS<6’¡WШ; ´ÿ ¥Êø\Òuî†åÝ–VNœkÒ7oòX¨Á­Ø÷FÎÑä±g÷ÿ M~Çî=p,X´ ÝÌÚÅ‹’ÃjÖ.ØöÏñ qïQ¤ÓZE†° =6·]܈ s¸>v•Ž^Ý\wq9r‰Î\¸¡kURÒ$­*‹Nq?Þª*!sŠÆ:TU_u±T+øX¡ ®¹¡,ÄâÃBTsÜ$Ø›4m椴zÜK]’’›Pƒ @€#â˜`é¹=I‡fiV•Ôî“nRm+µFPOhÍ0B£ €+¬5c v•:P'ÒyÎ ‰V~‚Ó†ÖuókDoh$å\*ö%Ю=£«…aȼ½÷Û.-½VŒŠ¼'lyî±1¬3ó#ÞE¿ÔS¤gV£m›=§\û"—WU¤ÚǼÿ ÂnÁGŒÃ ‚õN D³õNÚíŒÕ;HôyÄÈ©P¹Ä{:?R‘Ô¨âF÷ø£bÅó® JS|‚R÷ivýáâ€Æé¡è³´IئÑT!§˜•ت‚¬â@q€wnïCWÄ@JU€ê¯m6]Ï:£âx'+ÒðXvÓ¦Úm=–´7œ $ì“B£~p%ÕŸUþ« N@¼üï~w˜ñø5®—'Ôe»¤5ã//€ž~‰Tþ›Å7•#¤× Íö pÄ$ùeåì*«ÓŠEØWEÈsßg ¦ûvžSsLpºÊW–âµEWöˬH; ™!CYõZ ÃÄf æ#1W. \uWâ\,\Çf j’<qTbên›Î[vxx£ë 'ö¨1›˜ÀM¼Pÿ H)ƒêêŒA7s,|F“ 꺸k³9Ìö*ç®;Ö!Ö$Eiž•¹ÒÚ†ýóéÝû¾ÕS®ó$’NÝäŸz¤5r¦ãÄÃD÷Üø!°ø‡Ô&@m™Ì^Ãä­d q5Lnÿ N;.6½·N|#ä"1Nƒx“ã<3('&ñßt  ~ªu”1Tb㫨9ê–›–bìd$ߣ=#ÕãÒmU¯eí$EFù5ýYô櫨æì™Ç—±ssM]·á¿0ÕåJRÓªîiƒ+O58ÖñªŠÒx" \µâá¨i’¤i —Ö ” M+M¤ë9‚‰A¦°Qõ¾ßøK~¼Ã‘g…Ö´~÷Ï[3GUœÒ½#…kàÔ®Ò”‰³·dWV‰IP‰Ú8u¹”E ÖqLj¾êÕCBš{A^Âß;–¨`¯¬ìö ˼ ×tìø.tƐm*n¨y4o&Àx¥n¦×î‡aupáÛj8¿m›è¶ã!o½;ß0y^ý×^EÑ¿ÒjzŒ­)vÚÑnÄL …^ªô× ‡—‚3k Îý­hï]içå–îÏ*÷ñþ»Ô CÒjøjÍznˆ´ ¹#b'Fô‹ ‰v¥'’à'T´ƒHýÍ%M‰ ƒ&ÆÇŒï1 ‘ –Þ ‰i¬s žR-Ÿ kЬá¬7:þ 0ŒÅÒÕ/aÙ¬ÃÝ#Úøœ ©aiVc‰. ¹¦ãµ” ›Yg¦›ÆÎýº°f³7ƒhá·¸­}&D9¡ÂsÉÙÞèŠõØàC™¨ñbFC|´Ü(ŸƒÚÒ-%»'a Ì¿)ËÇn¿úÿ ÞŽX…4ÊÅH^ôΑí@ù¹Eh¶“L8Çjù ¼ÎåVªóR©Ï5uà V4lZß®=€xÖŸ–ÑÈ ÷”¨°¾__yM1tÉ?uÆþIkÄgæ@þ[¢†°XÃJ£j·:nkÅ¢u ‘}âGzö­/IµèЬ¼48q¦F°ŽR¼=ûì{´¯RýicS ÕÛ íNtÍÙï£,w4rêì®»~x(©Uñ§#Ñ&œÕ¤>ÎåÍÓ9’Ö{9eV­[Öjâ²ãu]˜å2›qÑšÕJç0€sÄ|Êëè0튔bÁ>“{×_F`Ø©ºê:µä,v¤ðfc1±"«ÔÍän1#=· Âøv~H½ÐßA¾¿Ü€Óš]Õ; I¾÷ç‚Qi†î¹9ywÔKG˜áñ zQY—§ÃÕZ07§X‚ Áh;ÁM)iÌCH-¯T‘ë|A0{Ò½LÚ–TâÖkÜ’dÀ“rmm»”جPF³ÖcbE§T€ÒxKºû’Ó®7±²(\4ŽÃ¸Uu@j™yĵ;³µ!Á¢b.W¤=mõ´êµK k ¸K^ÜÛ#p*Ü14qkZç5ïë †°5Ï%ÍÛ<Õ¤×Ô¥ê†C Õ´¼ú$ƒÖ“”]Ù¬qÞÚ[4©ý!ûÏ—Áb쳐XµA¬â~`›Çr¸8ìùÝ䫦<>ä÷«?xs´ÇÑ /á;¹øüÊÈÙà{"@Žïzâ¬[âß‚ U_<ÇŸ½4èN˜ú61®qŠu ¦þF£»äJ_ˆÙÎ~ ÞAã–݄ϗrŠD;xTž‘ô`É«…suãO`?³à™ô Lý#Íc5öoæØ‚y´´÷«ZR§<&JÇ+éâô´€i!Àˆ0æAoàðLèÖ-2ŸõW.’t^–(KÁmHµV@xÜÇy®Ñø­â^:Ú3w· 7½¹°ñ¸â¹®:',«Mœ—n­Á+Ãbš LÈ‘ÄnRÓÅœ%¦²‰¨ùQ:¤f‚ "PÕtô¸…cæl…&˜Ú˜Ôkv‹ž+vŠ,=¢v­6—Xy*¥t£«<™:“aîϲ=¦6rO]XI¿Œ÷¤zÚ­›¶ 6÷”w\d ü~v®ˆÌk«^m<ÿ ¢‰Õ\)ùºŽ;… lîÙÅEŠ®cѾ@vnMÏ,¼“ñ•ŽBxðÃzãÇç%3ˆ"}Ù•Åî> BÉú;Ò]V+P˜F_´ßé> Øše|ï‡ÄOmFæÇ ãqÞ$/xÐx­z`ï9"œÜij‚!7.\Td…9M‡•iŽ‹¾‘50ÞŽn¥ß4ÉôO ¹*í^QêËÜÇÌ8=ާs‰'ÂëÙ«á%Pú[O †ÅP¯Vsް.‰,kc¶ ¬A9n˜XÎ-ÞšN["¹QÕ‰ƒMýÁߺXJæÍaLj¾×Ãmã¾ãÚ uñÒþåQô¦¥ /ÄUx:‚ÍÜ’ Đ©ØÝ3V¨‰ÕnÐ6ó*óúK­«…c ¯U òhsý­jóÔj#,ímŒRµ«lbïUTŒÑ8†Ä0œÏr`ð¡¬É Ї ë"À² ™ 6¥ f¶ ¢ÚoܱԷ-<Àî)†a¶ž'Ú»¨TXqØæ¶÷YÄHy˜9ÈIW­YÀuMFë ºÏ’AqÌ4·/Ú †ô'i$øä­=Ä Ý|öK×40è|È6p‘0§)o¥ctî§H+CA-“ xØ|ÐXАç l8íºð3Ø:³¤¬KX¯UÿÙ ELF>P@ @8@ "" ""$$Ptd\ \ QtdRtd""GNUܞwLZ/+R9  @ qXG~CE|t>4 (    '; ?f  F  vo +    gL8 VE   n    f _j  iT Q .Q)  <'}^ <a 9 \ Em   ^ 3    b,E     M  2zb0  AO  nw  < D] _ K  c ~Q O AS 3L > }  .  &8 qQ  / \ wER"+s !     " ti  " y "  "__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizelibmpdec.so.2libpthread.so.0libc.so.6PyExc_ArithmeticErrorPyUnicode_Comparempd_iscanonicalPyMem_Malloc_PyUnicode_ToDecimalDigitmpd_qsqrtPyUnicode_AsUTF8AndSizempd_qsetprec_Py_TrueStructmpd_qsetemaxmpd_iszero__strcat_chkmpd_qshiftPyExc_RuntimeErrorPyObject_Freempd_freempd_qround_to_intxsnprintfPyObject_CallFunctionPyList_Sizempd_qseteminPyUnicode_FromFormat_Py_NoneStructmpd_arith_sign_Py_ascii_whitespacePyFloat_Typempd_geteminmpd_qnext_minusmpd_qminmpd_qdivintmpd_set_flagsmpd_qlnmpd_compare_total_magmpd_qmin_magmpd_isnormalmemcpyPyDict_SetItemStringmpd_isdynamic_datampd_lsnprint_signalsPyDict_GetItemWithErrorPy_BuildValuePyObject_HashNotImplementedmpd_qcopy_negatempd_validate_lconvPyUnicode_CompareWithASCIIStringPyExc_OverflowErrormpd_qmax_magPyExc_KeyErrorPyErr_SetStringPyUnicode_FromStringPyDict_SetItemPyComplex_TypePyLong_FromLongPyThreadState_GetPyErr_OccurredPyBaseObject_TypePyModule_AddStringConstantmpd_qexpmpd_qlogbmbstowcs_PyObject_Newmpd_qfmampd_qminusmpd_qmulmpd_qnext_plusmpd_getprecmpd_qfinalizePyUnicode_FromWideCharmpd_parse_fmt_str__stack_chk_failmpd_qxor_Py_NotImplementedStructmpd_set_positivePyObject_GenericSetAttrPyArg_ParseTupleAndKeywordsmpd_set_signmpd_round_stringPyObject_CallFunctionObjArgsPyObject_IsInstancempd_isspecialPyObject_GetAttrStringmpd_setspecialmpd_isfinitempd_qcmpPyDict_SizePyList_AsTuplempd_qremmpd_qsset_ssizempd_etopmpd_qcomparempd_isqnanmpd_qcopy_signmpd_qncopympd_issubnormalmpd_qplusPyMem_Reallocmpd_qcopympd_qsetclampPyModule_AddObjectPyLong_Typempd_to_sci_sizempd_qrem_nearmpd_clear_flagsPyMem_Freempd_getroundPyImport_ImportModulePyObject_IsTruempd_qdivPyDict_NewPyTuple_Packmpd_seterrorPyErr_Clearmpd_qsetroundmpd_mallocfuncPyExc_ValueErrormpd_maxcontextmpd_qinvertPyThreadState_GetDictmpd_signPyList_Appendmpd_isnan_PyUnicode_ReadyPyExc_TypeError_Py_FalseStructPyList_GetItemPyComplex_FromDoublesPyType_ReadyPyList_NewPyObject_CallMethodPyUnicode_InternFromStringPyFloat_AsDoublePyUnicode_DecodeUTF8mpd_qrotatempd_to_eng_sizempd_qabs__snprintf_chkmpd_qreducePyTuple_TypePyUnicode_Newmpd_qexport_u32mpd_qdivmodmpd_setdigitsPyExc_AttributeErrorPyErr_Formatmpd_qround_to_intPyObject_CallObject_PyLong_GCDPyBool_FromLongPyTuple_Sizempd_callocfuncstrcmpPyType_GenericNewmpd_qsubmpd_versionmpd_qpowmodmpd_traphandlermpd_getemax_PyLong_NewPyComplex_AsCComplexmpd_qformat_specmpd_qcopy_absmpd_isnegativePyType_IsSubtypempd_isinfinitempd_qscalebmpd_qmaxmpd_qset_ssizePyErr_NoMemorympd_setminallocPyModule_AddIntConstantPyLong_FromUnsignedLongPyObject_GenericGetAttrmpd_qormpd_issignedPyModule_Create2mpd_qset_stringmpd_classPyLong_FromSsize_tmpd_qpowmpd_qsetstatusmpd_etinyPyLong_AsSsize_tmpd_qnext_towardmpd_qget_ssizempd_adjexpPyUnicode_AsUTF8Stringmpd_same_quantummpd_reallocfuncmpd_callocfunc_emmpd_ispositivempd_qnewPyLong_AsLongmpd_qquantizempd_delPyErr_SetObjectPyDict_GetItemStringPyType_Typempd_compare_totalmpd_qcompare_signalmpd_qlog10mpd_qandmpd_qset_uintPyFloat_FromDoublePyExc_ZeroDivisionErrorPyArg_ParseTuplempd_issnanPyTuple_NewPyFloat_FromStringmpd_to_scimpd_qadd_PyUnicode_IsWhitespacempd_qsettrapsPyErr_NewExceptionmpd_qimport_u32mpd_getclampPyInit__decimal_edata__bss_start_endGLIBC_2.14GLIBC_2.4GLIBC_2.2.5GLIBC_2.3.4 ii  ui  ti  "P"%"%""P""'""[" 3"@'" "f("@8"&"`"sh".""`5"9"xȁ"@"" "("90"@8H"P"9X"7p"x"9"7""09"."Ȃ",Ђ",""`9"7@"!H"X"C"`"h"Px"@C""" "B""""B""ȃ"؃" B"""p"A"""@"`A" "(" 8"A"@"H"X"@"`"h"px" @"""@ "?"""p"`?""Ȅ" ؄"?"""@">"""">" "("@8" >"@".H"X"="`"5h"@x"=""@"" =""""<""Gȅ"؅"`<""""<""O"@";" "W("8"`;"@"`H"@X";"`"lh"x":""u"@":""""@9""Ȇ"؆"8"""`"`6"""" 6" "("08"`5"@"H"X"4"`"h"x"`4""""4""""3""ȇ"0؇"@3"""P"2""""2" "("p8" 2"@"H"X"1"`"h"x"`1""""1"" ""0""Ȉ"0"""`0"""@"0" "%("`8"/"@"2H"X"`/"`">h"x"/""C"".""R""`.""_ȉ"P؉".""m""-""{""@-" "("8","@"H"X","`"h"x"@,"""","""P"+""Ȋ"؊"`+""""+"""н"*" "("8"@*"@"H"0,X"*"`"h"@x")"""Ў" " 0"sȋ"Ў؋"`)"""Pm"(""$""'"@">H"h"Cp""Ȍ"،"|""""{""""{" "("@8" z"@"H"pX"@y"`"h"x"w"""0U"w""""u""ȍ"0U؍"`t"""М"s"""@"r" "("8" r"@"H"X"q"`"Gh"@x"p""""@p""O""o""`Ȏ"P؎"`n""l"]"j""""h" "("P8"g"@"H"X" g"`"h"x"f"""p" f"""P"e""ȏ"0؏"@e""""d"""Ї"@d" " ("8"c"@"H"pX"b"`"h"Дx"a""H"`"`a""" "`""QȐ"0ؐ"``""""_""""^" "2("`8" ^"@">H"0X"\"`"Ch"x"`\""R"@"Y""m"P"`W""{ȑ"Pؑ"`S"""P"`Q"""0"O" "("@8" N"@"H"X"M"`"h"x" M"""P"L""""`J""Ȓ"ؒ"I"""P"`G""3""@E" "[("8"D"@"H"MX"C"`"h""d""q"" ȓ"Ѓ"|"""0 "("@"H"`"h"""`"Ȕ"@fД"0dؔ"""" ""T"@"LP"pH""a""""" "0"`"h"""" "";Ȗ"3"U"M "("@"lH"d`"h"{"""""ȗ""""" "("""P}""""8"xP""""P,ș"`""p,""h""8"&P"+x"p"p"8"FМ"}""@"" "H";X"4؝"6","I ""8"H"`1p""""""@""s`"h"p"x""""""ȟ"П"؟""""""""l" "("0"@"}P"X"p"x"""""Р""""" "("@"H"`"h""""""ȡ""""" "("0"@"P"`"p""""""Ȣ""""" "("@"H"`"h""""""ȣ""""""""" "-("40"?8"D@"IH"JP"NX"f`"kh"lp"nx"q"w"{""""""""""""""X"Ep"u"uP"u"F`"Q"Q " "( "0 "8 "@ "H "P "X " ` " h " p " x " " " " " " " " " " " " " " " "! ""!"#!"$!"%!"& !"'(!"(0!")8!"*@!"+H!",P!".X!"/`!"0h!"1p!"2x!"5!"6!"7!"8!"9!":!";!"<!"=!">!"@!"A!"B!"C!"G!"H!"K""L""M""O""P ""Q(""R0""S8""T@""UH""VP""WX""X`""Yh""Zp""[x""\""]""^""_""`""a""b""c""d""e""g""h""i""j""m""o""p#"r#"s#"t#"u #"v(#"x0#"y8#"z@#"|H#"}P#"~X#"`#"h#"p#"x#"#"#"#"#"#"#"#"#"#"#"#"#"#"#"#"#"$"$"$"$" $"($"0$"8$"@$"H$"P$"X$"`$"h$"p$"x$"$"$"$"$"$"$"$"$"$"$"$"$"$"$"$"$"%"%"%"%" %"(%"0%"8%"@%"H%"P%"X%"`%"h%"p%"x%"%"%"%"%"%"%"%"%"%"%"HHݪ!HtH5R!%T!@%R!h%J!h%B!h%:!h%2!h%*!h%"!h%!hp%!h`% !h P%!h @%!h 0%!h %!h %!h%ڪ!h%Ҫ!h%ʪ!h%ª!h%!h%!h%!h%!h%!hp%!h`%!hP%!h@%z!h0%r!h %j!h%b!h%Z!h%R!h %J!h!%B!h"%:!h#%2!h$%*!h%%"!h&%!h'p%!h(`% !h)P%!h*@%!h+0%!h, %!h-%!h.%ک!h/%ҩ!h0%ʩ!h1%©!h2%!h3%!h4%!h5%!h6%!h7p%!h8`%!h9P%!h:@%z!h;0%r!h< %j!h=%b!h>%Z!h?%R!h@%J!hA%B!hB%:!hC%2!hD%*!hE%"!hF%!hGp%!hH`% !hIP%!hJ@%!hK0%!hL %!hM%!hN%ڨ!hO%Ҩ!hP%ʨ!hQ%¨!hR%!hS%!hT%!hU%!hV%!hWp%!hX`%!hYP%!hZ@%z!h[0%r!h\ %j!h]%b!h^%Z!h_%R!h`%J!ha%B!hb%:!hc%2!hd%*!he%"!hf%!hgp%!hh`% !hiP%!hj@%!hk0%!hl %!hm%!hn%ڧ!ho%ҧ!hp%ʧ!hq%§!hr%!hs%!ht%!hu%!hv%!hwp%!hx`%!hyP%!hz@%z!h{0%r!h| %j!h}%b!h~%Z!h%R!h%J!h%B!h%:!h%2!h%*!h%"!h%!hp%!h`% !hP%!h@%!h0%!h %!h%!h%ڦ!h%Ҧ!h%ʦ!h%¦!h%!h%!h%!h%!h%!hp%!h`%!hP%!h@%z!h0%r!h %j!h%b!h%Z!h%R!h%J!h%B!h%:!h%2!h%*!h%"!h%!hp%!h`% !hP%!h@%!h0%!h %!h%!h%ڥ!h%ҥ!h%ʥ!h%¥!h%!h%!h%!h%!h%!f%!f%!f1/Hʞ!LH5DH811,9RH!H5F1H8"919H+u LkHAU0Hmt#E1;I,$uM\$LE1AS0g;HEHE1P0U;H+u LkHAU0Hmt#E1u=I,$uM\$LE1AS0Z=HEHE1P0H=H+u LkHAU0Hmt#E1h?I,$uM\$LE1AS0M?HEHE1P0;?H+u LkHAU0Hmt#E1[AI,$uM\$LE1AS0@AHEHE1P0.AH+u LkHAU0Hmt#E1NCI,$uM\$LE1AS03CHEHE1P0!CHmu HMHQ0I,$t1rEH+uHSH1R0[EIt$L1V0IEH+u LkHAU0Hmt#E1GI,$uM\$LE1AS0GHEHE1P0xGHmu HEHP0I,$u I\$LS0E1IHmu HEHP0I,$u I\$LS0E1KH{HBMH{H9M1FMHSHR0MH{HNH{H|N1NHSHR0NH+t.1OHSHR0PHmuHuH1V0OLCH1AP0zOH+t.1PHmuHuH1V0PHSHR0PLCH1AP0dPH|$H/t1H+uHKH1Q0HwV0H|$H/t1yH+uHKH1Q0bHwV0VHH_S0H RHmt%H1RHmuHUHR0H1QHuHV0H1QH~uHk!H5AH81!RH{uHy!HRH!HQHSHHD$R0H\$RHHLGAP0,SHSHHD$R0H\$THHLGAP0THHLGAP0mUHHLGAP0:VHHLGAP0WHHLGAP0WHSHHD$R0H\$XH+c[LKH1AQ0YIl$L1U0YL]HAS0$[Hmu LUHAR0I,$tIm [I]LS01yYM\$LAS0HWR0%^H+_HsH1V0]Hmu H]HS0I,$u Il$LU0H\$\Hmu LEHAP0I,$u ML$LAQ0H|$H^H/^LW1AR0\1HSHD$HR0HD$LEHD$HAP0HD$H|$(H/uH_S0H|$ H/HWR01H|$(H/HOQ01H|$(H/u LgAT$0H|$ H/t5H+HCHP01LKHD$HAQ0HD$rHoU0Hmu HMHQ0I,$t1^H+uHSH1R0^It$L1V0^Hmu HMHQ0I,$t1DaH+uHSH1R0-aIt$L1V0aHmu HMHQ0I,$t1cH+uHSH1R0cIt$L1V0cHmu HEHP0I,$t1fIT$LR0Hmu HMHQ0I,$t18hH+uHSH1R0!hIt$L1V0hHmu HEHP0I,$t1jIT$LR0H+u LkHAU0Hmt#E1lI,$uM\$LE1AS0xlHEHE1P0flH+u LkHAU0Hmt#E1nI,$uM\$LE1AS0knHEHE1P0YnH+u LkHAU0Hmt#E1ypI,$uM\$LE1AS0^pHEHE1P0LpH+u LkHAU0Hmt#E1lrI,$uM\$LE1AS0QrHEHE1P0?rHmu HMHQ0I,$t1tH+uHSH1R0ytIt$L1V0gtHmu HEHP0I,$t1vIT$LR0Hmu HMHQ0I,$t1yH+uHSH1R0yIt$L1V0xHmu HEHP0I,$t1{IT$LR0Hmu HEHP0I,$t1}IT$LR0Hmt1H+uLKH1AQ0LUH1AR0pHmt1H+uLKH1AQ0LUH1AR0؀H|$H/t*1H+uHKH1Q0HWR0HwV0H+t.1HSHR0jHmuHuH1V0ځLCH1AP0ȁH+t.1HSHR0THmuHuH1V0ĂLCH1AP0鲂H+t.1ՃHSHR0>HmuHuH1V0鮃LCH1AP0霃H+t.1鿄HSHR0(HmuHuH1V0阄LCH1AP0醄H+t.1驅HmuHuH1V0鑅HSHR0LCH1AP0pH+t.1飆HmuHuH1V0鋆HSHR0LCH1AP0jH+t.1靇HSHR0HmuHuH1V0vLCH1AP0dH+t.1釈HSHR0HmuHuH1V0`LCH1AP0NH+t.1qHSHR0ډHmuHuH1V0JLCH1AP08UH="SQyHHt1H@@Hk1HHHC00HC H HZ[]1[1[1[H!H56H:4tNL ڏ!H5s6I9c)LH1[I/u IWLR0LImM}LAW0E1MNLAQ0|Hg!H5 6L $H;H,$HmuLeHAT$0H=,!H56E1H?鍌I/u MwLAV0fID$LP0頑ICLP0UH ׎!H56E1H9M(I,$/IT$LR0 11E1H=g"HtH/HS"'Ht Hm#Ht H+=H="HtH"H/,H="HtH"H/H=u"HtHe"H/H=L"HtH<"H/H=#"HtH"H/H="HtH"H/Mt ImE1HcSHL.H21H+"1LKHAQ0鹖HSHR0IoHmu HEHP0E11qLSHAR0LMHAQ0ϒL@HAP0镒Hmu L]HAS0H+u LkHAU0E111HsHV01E19LcHAT$0LkHAU0aL]HAS0GE1E1HWR0HuHV011HKH1Q0LCHAP0LOAQ0LWAR0LgAT$0LwAV0LAW0H_S0+M]LE1AS0! Hڋ!HHʋ!HH!HH!HH!HH110ME1MMLAQ0H1vM\$LAS0LUHAR0H‰HvuH !H5;H9E5Imti1麜MMHD$LAQ0I.HD$MVHD$LAR0HD$遜I.u M^LAS0ImuImLU01XMeLAT$01EUHSHH\$HbHtH!H5G;1H:1H߾1HHtH4H Hu HCHP0HH[]H1H"H58H 8H8t)LOIL@EDPLDPLEH LHPH=:1t$H$t$P$t$X$t$`$t$h$t$p$t$xL$LD$xH$HT$pH$HHCHP0H=ֈ!H57E1H?TrHH=!H5;E1H?(F^H+LCHAP0HJ/H R!H5K;H9*HWR0E7H=.!H5/1H?ΚL!H5/I8鳚H{H`H{HW1镚I,$t1釚IL$L1Q0uID$LP0鱚HHupH !H52/H91HCHP08H+t-1؛luH=Y!H5/H?1鲛HSHR01顛H9 "H9n "H9Y "H镛HPHR0HPHR0 H+HCHt1LH+uHCH1P05HKH1Q0$L!H59I81TH s!H59H9171鏝1鈝Ht$mHt$AHbMHD$MHt$H‰HH{1~ATUH-!SHGD HHu7H H}t9Deu*H !HuHyH u HSHR01 H!H[]A\ý9H |!H59H9tHVmH S!H59H9HVL *!H5K6I9mL !H59I:OL!H59I;w1[]A\H!H!1H+t |1HCHP0H+t ^1IHCHP0H=l!H5,1H?i H R!H5,1H9鿬HEHP0HmHUHR0閬1H{HH{H1uHރ!H591H8UHD$7uH!H58H8'1 HD$1H!HzuHg!H58H81dHD$:1H!H3uH !H5I8H81HD$H{HHLH!H|$鮬H{HH5!H|$1鯬1飬LzIHLP LT$Xf1LQIHuK11HD$3HL$,D$%u+LA!H57I81HP HT$`&1v1L- !H57I}1鑬IHց!H56H:O1jI,$HD$ID$t1NIL$LQ0HD$9H x!H57H9靮7铮IuLV0鄮L% !H|$A$H+ӭH鷭Im@MELAP00 H !H5(H9lH=ˀ!H5r(H?T[1]A\HmuHUHR0HEHP0ƮE1sII銱IULR0遰ID$LP0ֲE1ALIH+AXE1Hu#H+AE1E1E1ְQIHtHL1gH+IImMULAR0鿲E1ӱH+u HCHP0E1eLIDIE1顰LH0"H+IKM^LAS0!HuHV0޳HmӳLEHAP0óH -!H5F5H9騳鞳1H+uHKH1Q0OH~!H541H:d{1DH+uHKH1Q0-H~!H531H:1H+uHKH1Q0tZH]~!H531H:1TH+uHKH1Q0=,H~!H5>31H:1H+uHKH1Q0oH}!H521H:D1dH+uHKH1Q0MH}!H521H:#1H+uHKH1Q0TH=}!H5f21H:1p#H }!H5521H:F1H|!H521H:RH+u HSHR01镲H+t1pHCH1P0_H+t1HCH1P0H=k|!H521H?*H=!QHH1HD$aL|!H521I8H {!H52H9|1QLl$骵ImOIMLQ0@ImLU01Lt$ LLT$ iH{!H5+H;1 v1oHa{!H5z1H8Ը ʸHsH1V09EtPHL$HmhLMH1AQ0LH|$ H/GH_1S0/HOQ0Hz!H5 01H8YH|$ H/uLWAR0H|$H/L_AS0tHL$`HOQ0Hwz!H5/1H8H|$ H/uLWAR0H|$H/L_AS0H|$ H/Ho1U0tHL$8HmLMH1AQ0HOQ0H|$ H/uLWAR0H|$H/L_AS0H|$ H/H_1S0wHy!H5.1H8Zst/HL$H|$ H/uLWAR0H|$H/tb1rH1y!H5Z.1H8UHmuLMH1AQ0<HOQ0H|$ H/uH_1S0L_AS0 tHL$H|$ H/]H_1S0"HmDLMH1AQ0HOQ0H|$ H/uLWAR0H|$H/L_AS0HAx!H5j-1H8.tHL$>H|$ H/H_1S0HmLMH1AQ0HOQ0H|$ H/uLWAR0H|$H/L_AS0uHw!H5,1H8XH|$ H/tk1eLGHD$AP0HD$NHwHD$V0HD$)Hxw!H HyH5!H9&tHL$~LOAQ01Hv!H5#,H8s1H|$ H/1HmuLMH1AQ0LGAP0HOQ0H|$ H/uLWAR0H|$H/uL_AS0~HyH5N!H9`tHL$H_1S0IH5v!H5^+1H8,H|$H/uLOAQ0H<$H/t~1LGAP0HwV0H|$H/uL_1AS0HyH5!H92t HL$Hu!H5*1H8LWAR0}H|$H/uLOAQ0H<$H/t~1YLGAP0LHwV02H|$H/uL_1AS0&HyH5!H9t HL$wHt!H5*1H8iLWAR0HwV0v H+{ HkH1U0 H|$(H/uHGP0H|$ H/uHWR0H|$H/7 HOQ0LOAQ0H|$(H/ LO1AQ0AuH.t!H5W)1H:HL$LG1AP0vtHL$" H|$ H/ H_1S0 Hm LMH1AQ0 HOQ0g H|$ H/uLWAR0H|$H/ L_AS0Y Hps!H5(1H8< H|$ H/uLWAR0H|$H/1g 4t#HL$ HmuLMH1AQ0; Hr!H5'(1H8u LGAP0 HOQ0 H|$ H/uH_1S0 L_AS0 tHL$l HOQ0 Hm, LMH1AQ0 H|$ H/uLWAR0H|$H/ L_AS0 H|$ H/ H_1S0 Hr!H5C'1H8 tHL$ HOQ0 Hm LMH1AQ0 H|$ H/uLWAR0H|$H/ L_AS0s H|$ H/ H_1S0V Huq!H5&1H89 btHL$ HOQ0A Hm LMH1AQ0M H|$ H/uLWAR0H|$H/N L_AS0 H|$ H/2 H_1S0 Hp!H5%1H8G tHL$m Hm1 LMH1AQ0 HOQ0 H|$ H/uLWAR0H|$H/ L_AS0 H|$ H/ H_1S0 H+p!H5T%1H8 tbHL$ H|$ H/ Ho1U0 HOQ0z H|$ H/uLWAR0H|$H/ L_AS0p Ho!H5$1H8S tHL$ HOQ0oHmLMH1AQ0{H|$ H/uLWAR0H|$H/|L_AS0LH|$ H/`H_1S0/Hn!H5'$1H8uH|$H/uHWR0H|$H/uHOQ0Ld$1H|$H/uHoU0H|$H/uHwV0H|$HtH/t;E1HOQ0H|$H/uLoAU0Ld$Ld$HGP0MD$HD$LAP0HD$HOQ06H|$(H/uH_S0H|$ H/u LgAT$0Hmt21NH|$(H/uHoU0H|$ H/uHWR01#HEHP01H|$(H/uHOQ0HD$ HD$(LMHD$HAQ0HD$HWR0H|$H/uLOAQ0H|$H/tG1H|$H/uL_AS0Hl$Hl$HmuLEH1AP0gLWAR0ZHWR0H|$H/uLOAQ0H|$H/tG1 H|$H/uL_AS0Hl$Hl$HmuLEH1AP0LWAR0L_AS0H|$H/uLOAQ0H|$H/t1cLWAR0VID$L1P0>I,$u M\$LAS0H+ޭHCH1P0IL$LQ0鶫H-k!H5"H}1OHl$HuHV01[Hmu HEHP0I,$t1ήH+uL[H1AS0鶮IT$L1R0餮IH+u L[HAS0I.t2E1װHsHV0ȰI,$uMT$LE1AR0魰MnLE1AU0隰I,$tEE1防IH+u LkHAU0I,$uID$LE1P0jHsHV0[M\$LE1AS0GIHM}t-E1ֵH=sj!H5E1H?鸵ImuM]LAS0I,$uMD$LE1AP0鉵H LI,$uHI,$t E1TMT$LAR01H=d!ߑHHgHx1R1K1DE1CS~w8A^MIIM9u韸H+t1L[H1AS0vXLL$LL$@@uLLL$<0MLL$AFH+uHKH1Q0頸H=h!?@MAF UuCHUH h!11H5HRH9SH+LkH1AU071MD$LAP0镹1餸H=!D$kHHt.1HxHL$IUt$LSϷH+t1·1鶷LkH1AU0餷1AxlC<:C<阿A6L]HAS0ID$LP0H=3V!HV1H5^H?vHmLEH1AP0H U!HR11H5#H9;bHE¸ո׸f.AU1IHATH5USH(HL$HT$D$ вӸH\$L%!HCL9uyHl$HH}H9HES}IHzHL$ HUHsHx豱H+Hmt$ L uH(L[]A\A]LHFHSHLL蘏HH$Hl$H}L9uYHEH="!|IHķHL$ HUHsHxH+tjHmtVt$ LrR騷H5!IuHut:HLH=!HHq6LUHAR0LKHAQ0H=S!HV1H5H?2H+#LCHE1AP0H S!HR1E1H5H9H޶@f.AU1IHATH5USHHHT$蚰Hl$H!HEH9L$$HEI|$H9I$hIHMMHAE0ffo gIEIT$HuMM@I}AE AM0诪HmI,$HL[]A\A]HH蠱HUHLHIHHL$$I|$H9u"I$H=!螰IH6齵H5!1uIt$t=LLH=!݌IHu=M\$LAS09LUHAR0H=Q!HV1H5H?Hm^LEHE1AP0H Q!HR1E1H5H9ٰHE DAU1IHATH5USHHHT$芮Hl$H!HEH9L$$HEI|$H9I$XIHMMHAE0ffo WIEIT$HuMM@I}AE AM0HmI,$HL[]A\A]HH萯HUHLH9HHL$$I|$H9u"I$H=!莮IH6سH5!!uIt$t=LLH=!͊IHu=M\$LAS09LUHAR0H=O!HV1H5H?HmyLEHE1AP0H O!HR1E1H5H9ɮHE 3DATIUH-!SHHH~H9HAT$PHvH|$H+HHHLd$OHHt#@ ʲ@H{0HL脪H5}O!H|$HH[]A\H貭HCHLH[HHtAT$PHsH|$0H+HWHBHLd$蘮HHh@ @H{0@HH N!HPH5711H9K0fDATIUH-c!SHHH~H9HAT$PHvH|$跨H+H˱HHLd$߭HHt#@ @vH{0HLH5 N!H|$HH[]A\HBHCtzHLHHHtAT$PHsH|$H+HHHLd$,HHl@ а@H{0DH L!HPH511H9:HpATIUH-!SHHH~D$ H9uVHQtHHuHL$ IT$HsHx辬H+at$ L(HH[]A\HuyHCtrHLH譆HHH=J!sHHHL$ IT$HsHx2H+կt$ L~t˯HH jK!HPH511H9諪F靯ATIUH-!SHHH~D$ H9uVH!sHHHL$ IT$HsHx^H+t$ L}HH[]A\H̩HCtlHLHyHHH=!rHHHL$ IT$HsHxΤH+t$ Lh}pήH HH5HH5E!HHHH E!HPH5>11H9RHDATIUH-c!SH~HH9u+HH~ urHD!HH+ت[]A\H裣uHCtRHLHTHHt$H{賟uHD!HHHH/t>HH5D!HHHH 1D!HPH5^11H9rHCDATIUH-!SH~HH9u+HH~ɠurHD!HH+ []A\HâuHCtRHLHt~HHt$H{suHC!HHHH/t>HH5C!HHHH QC!HPH5~11H9蒢HvDATIUH-!SH~HH9u+HH~ytrHnC!HH+>[]A\HuHCtRHLH}HHt$H{#tHC!HHHH/t>HH5B!HHHH qB!HPH511H9財H驨DATL%!UHSH~HL9uKHH{Hu%uHJB!HH+m[]A\H5pB!HHHH/t~HLuGHCt@HHL|HHtHuH{诙uHA!HHHHH A!HPH511H9Ġԧf.ATL%׿!UHSHHH~L9u@HHuH{tHA!HH+H[]A\H8A!HLuHCtHHL{HHuHH @!HPH511H9@f.AV1IHAUH5ATUSH HL$HT$D$LD$詝[Hl$Hվ!H}H9Ld$HEIT$H9@Ll$I$I}H9IE_HHΦHHH@0fHufo[HH@HxIMP IT$LL$H@MFX0\HmI,$ Imt$LrH H[]A\A]A^HhaHE-HLHzHH/Ld$IT$H92I$Ll$I}H9IEH=!JHHHCHC0fIMfo FHC@HuH{C IT$LL$HCMFK0GHmkI,$Imt$LqH H[]A\A]A^fH5ټ!TAMMALLH=!xIHHm̤I,$1xDf.H5i!HIt$taLLH=>!xIH]MELAP0It$LV0L|=!IQH51I:远NH=[=!HV1H5H?螜Hm=LEH1AP0HUHR0H =!HPH5@11H9TxHE黣xf.AVH w!AUIHHATHJUSH8H=!HD$ D$H\$ HD$P1LL$0LD$8ْZYHl$(L5!HUL9Ld$ HEI|$H9HT$I$H9膚HHLPHf@0IMfo @ HuH{H@IT$H0LP@HD$HcLD$ )HmI,$t$ LnDH0H[]A\A]A^Df.H5 !脚yIt$LLH=ݹ!(vIHHT$H9tfHt$Lx[H=!jHHfL[HC0IMfofS HuH{HD$L[@IT$HC[0HuKLD$ HmI,$t$ LmH0H[]A\A]A^HILL$ HlH|$H/ujff.LHEHMHLLtHHt=Ld$ I|$L9sI$IL$LQ0>LuHAV0#1#L9!HV1H5I8HmuLMH1AQ0H=9!HQ11H5H?ϘHEZ͠造fDAU1IHATH5USH(HL$HT$D$ pѡHl$H!HEH9Ld$HEI|$H9mI$=HHrLPH@0fIMfo9LP@HuHxP IT$LD$ H@X0讖HmKI,$pt$ LkH(H[]A\A]HH[HUHLHsHHhLd$I|$H9I$H=!THH3LKHC0fIMfo PLK@HuH{C IT$LD$ HCK0ŕHmtfI,$t$ Lj:H5!~aIt$t`LLH=۵!&rIH:\L]HAS0H ,7!HR11H5UH9mID$LP0eH=6!HV1H5$H?6L]HAS0ID$LP0H=s4!HV1H5H?趓HmLLEH1AP0H :4!HR11H5cH9{bHEf.AU1IHATH5OUSH(HL$HT$D$ Hl$H6L]HAS0ID$LP0H=1!HV1H5H?HmLEH1AP0H 1!HR11H5H9ːbHE鈚雚靚f.AU1IHATH5USH(HL$HT$D$ `Hl$H!HEH9Ld$HEI|$H9I$-HH:LKHC0fIMfo )LK@HuH{C IT$LD$ HCK0HmI,$t$ L|cCH(H[]A\A]HHKHUHLHjHHLd$I|$H9u"I$H=}!HHHPH5`!ێuIt$t=LLH=6L]HAS0ID$LP0H=,!HV1H5H?HmXLEH1AP0H ,!HR11H5H9ˋbHEf.AU1IHATH5USH(HL$HT$D$ ` Hl$H!HEH9Ld$HEI|$H9I$-HHLKHC0fIMfo )LK@HuH{C IT$LD$ HCK0Hm I,$t$ L|^>H(H[]A\A]HHKHUHLHeHHLd$I|$H9u"I$H=}!HHHĔH5`!ۉuIt$t-LLH=LCHE1AP0H %!HR1E1H5H9HfDAU1IHATH5USH(HL$HT$D$ 萂H\$L%!HCL9u}Hl$HH}H9HEMIHIMHUHsHxLD$ ]|H+ Hmt$ LWyH(L[]A\A]LH諃JHSHLLT_HH(Hl$H}L9u]HEH=ޢ!YLIHIMHUHsHxLD$ {H+tjHmtVt$ L*WNЎH5!uHut:HLH=c!^HHm6LUHAR0LKHAQ0H=#!HV1H5H?H+KLCHE1AP0H n#!HR1E1H5H9讂H fDAU1IHATH5USH(HL$HT$D$ PH\$L%|!HCL9u}Hl$HH}H9HEJIHIMHUHsHxLD$ |H+ Hmt$ LUyH(L[]A\A]LHkJHSHLL]HH(Hl$H}L9u]HEH=!JIHIMHUHsHxLD$ S{H+tjHmtVt$ LTN݌H5F!uHut:HLH=#!n\HHm6LUHAR0LKHAQ0H=g!!HV1H5H?誀H+XLCHE1AP0H .!!HR1E1H5VH9nHfDAU1IHATH5OUSH(HL$HT$D$ ~Hl$H6L]HAS0ID$LP0H=!HV1H5H?~HmLEH1AP0H !HR11H5H9}bHE餉鷉鹉f.AU1IHATH5USH(HL$HT$D$ `{Hl$H!HEH9Ld$HEI|$H9I$-|HHVLKHC0fIMfo )LK@HuH{C IT$LD$ HCK0uHm I,$t$ L|PH(H[]A\A]HHK|/HUHLHWHHLd$I|$H9u"I$H=}!H{HHlH5`!{uIt$t-LLH=6L]HAS0ID$LP0H=!HV1H5H?yHmtLEH1AP0H !HR11H5H9xbHE+-f.AU1IHATH5USH(HL$HT$D$ `v)Hl$H!HEH9Ld$HEI|$H9I$-wHHʄLKHC0fIMfo )LK@HuH{C IT$LD$ HCK0rHm I,$t$ L|K>H(H[]A\A]HHKwHUHLHRHHLd$I|$H9u"I$H=}!HvHHH5`!vuIt$t-LLH=kH+?|t$ LAHH[]A\H|muyHCtrHLH-IHH{H=ʌ!E6HH{HL$ IT$HsHxjH+{t$ LAt{HH !HPH511H9+mF{{ATIUH-C!SHHH~D$ H9uVH5HHi{HL$ IT$HsHxiH+U{t$ Lx@HH[]A\HLluyHCtrHLHGHHzH=!5HHzHL$ IT$HsHxhH+zt$ L?tzHH !HPH511H9kFzATIUH-!SHHH~D$ H9uVHq4HHzHL$ IT$HsHx.cH+zt$ LH?HH[]A\HkHCtlHLHFHH zH=f!3HHyHL$ IT$HsHxbH+yt$ L>pyH !HPH511H9jHHyf.ATIUH-Ӊ!SHHH~D$ H9uVH13HHyHL$ IT$HsHx.hH+yt$ L>HH[]A\HiHCtlHLHEHHyH=&!2HHxHL$ IT$HsHxgH+xt$ Lx=pxH L !HPH5y11H9iHHxf.ATIUH-!SHHH~D$ H9uVH1HHxHL$ IT$HsHxcH+wxt$ L<HH[]A\HhuyHCtrHLHMDHHxH=!e1HHwHL$ IT$HsHxbH+wt$ L<<twHH !HPH5711H9KhFwATIUH-c!SHHH~D$ H9uVH0HHwHL$ IT$HsHxcH+wt$ L;HH[]A\HlguyHCtrHLHCHH3wH=!50HHwHL$ IT$HsHxBcH+wt$ L ;tvHH !HPH511H9gFvATIUH-3!SHHH~D$ H9uVH/HHvHL$ IT$HsHx^`H+vt$ Lh:HH[]A\HL H-7 HHLEMRH L% H5ߣM\$`HH`HMkMM{(HY@L-v!L5g!L=X!HI!|H5!HlI$H5XH !HlH H=y!Hz!HLy!Hw!Hu!yUlH=*x!eUlH=t!QU|lH=bv!=UhlH=iYHHPlH=~z!HH5P6nH=x!HH5ɢPnH+mH=VHHkH5HQHHRmHH x!1HH55QHumH([mH5iHSQH!HLmHm!mH+mH=>bVHHYkHL/1H ;HAH5?PIHF!HqlH=!XHHOmH=!HH5HO"mH+lH5HPHHmH= I1H r!HšH5ɡTIH~!HjHmlH+lH=1r!,UIHSjHyw!H5qHHgw!WlHu!H5LHu!lWqlH~!H5LHJWOlL5 1H= I6 SHH0~!H kHHH5LWl SHH}!HjL=q!Af.==@H5}!1GXHHjI1H]RHIGHajH+njHEI7HLPVUkIwH|!IcAI HHtAtyAG=teR_H HH5}!1WHHjI1HQHIGHiH+UiH H5n!H=+n!L5$n!H5n!A~1 WHHiI~1H6QHIFH:iH+7iIVI6LH)U.jI I>trH5Xn!H n!H(o!1H5n!VHHo!H5n!1{VHLl 1I]VH81H=r!GRHH5{!HQHHH5fLnTsiH=^ THHz!H;hH H5ILH-T2i1H=Lr!QHHz!HgAHHLAI"IfoI Lx H5H@(KLP0L`8@P@Sh1H=q!FQHHz!HwgHHfo H!Lx H5Hx0LH@(L`8@PH=SBhH==k!H-6k!t7H}[NHHAgHuHLSfHH}uHy!H+HfL% L5y!M|$@I<$RHIHfHI4$HLRfIIM9uHH5L:RVf-JH5LHRxZL[]A\A]A^A_'f"ff.@H9=Ix!SHt=H{@Ht H/uHGP0H{HHt H/uHWR0HKH[H@Hw!fHa G,Hf.H H=Bx!HfHG1DSHHSHCH[H@fHcPLUHHSQLHHgHw ]P1Z[]HO H5H8Jf.AUATUSHHGH5w!HH9*H;=w!!H;=w!H;= w!H;=w!H;=v!H;=v!H9=v!"OŅH5v!H߽OH5v!H߽NtjH5v!HNtkH5zv!HNt_AL-Av!KtHDNt#IIuH H5H:IH[]A\A]ý1ڽӽ̽ŽAVAUATUSHFHH5u!HH9PH;u!+H;u!&H;u!H;u!H;~u!H;yu!H;tu!HMAąH5$u!HMH5u!HmMH5u!HVMt\H5t!HCMAL5t!K4HEMt+IIuH H5 H: HAH}D4Od1[]A\A]A^AAAAE1AAff.AVAUATUHSHDg,1DHDdH=f!It>Hf!H H;t$DctHsLIcH H;u1De(WDIH3dH=sf!t?Hjf!H H;t$DctHsLDIcH H;uHcU4}8H HuLMH HUAV1AUWDEPH=APLE JIMH HqIuHLcI.t H[]A\A]A^ScfDATUHSH`IHr!Ht~H;BXuxRPHuH|$HHHeHLd$MHH@ H xe@geH{0LIH5 H|$HH[]A\ADHHeH5~r!HMIHHxH5i!H9dHHt L%q!ID$XAT$PHuH|$GHHHLd$MHHt#@ H d@dH{0LDHL = H|$A.HHdH=q!1[IHxd@,H5q!HHJPdI,$&`d/dfUSHHH~H5h!H9dBHHHdH;Cq!tWH;*q!tNH;q!tEHH5q!HHHp!vJ0dH+dH HH[]H1[HHd@,H5p!HHH=p!JcH+cH HfH h!SH9jIHH0dH=op!1`GHC@HdH=Tp!1EGHCHHdL)p!MtFAo@HS@Hs,CAoH K AoP0LC(S0LBHpCPHCXH[H{H5 LK@LS(L[,MQLXCPHCX10HH]cH=o!1FHC@H4cH=o!1rFHCHH.cH5Vo!HoH{H mHH=a!H;5a!H=a!oH;5a!H=a!TH;5a!H=a!9H;5a!H=a!H;5a!H=a!H;5a!H=a!H;5a!Ha!tH H8H;pu@bHWujH HHf.H a!`!:bHOu'H HHH`!H HHH`!d@H`!T@H`!DH|$OH|$vSHHHpBHHaHH9HGH{!FE1t HD[H= H5cH?K@ADSHHHBHH\aH{ Gt1H[Hw H58H8?SHHHAHHtH{Ft 1H[HD$HCHt$Ht׉H H5H8?Df.SHHH@AHHtH{Dt#1H[HD$BHt$H‰HuH H5H8!?ff.UHSHHHFtGH5+H8Ct$H5 H%Cu!HEHHH[]fHE@HH[]ÐHHH[]ADf.HH3?Hj!HHHHf.HHs@HHc?HHsFHH?HHEHHw?HH>HHW?USHHH=)]!H|H;51]!H=+]!aH956]!H=0]!FH;5;]!H=5]!+H;5@]!H=:]!H;5E]!H=?]!H;5J]!H=D]!H;5O]!H0]!tH H8H;puf.XuCHAx7HU u^ 1H[]ÐHy\!\!tf.H \!H\!1!ˉfDH9\!d@HI\!THT$zKHT$H= H5̒H?Ll$I9IEL>HD$HE1E1H-(X!LL]@H}H;#X!H=X!H9(X!H="X!H9-X!H='X!H;2X!H=,X!H;7X!H=1X!fH;H}H9V!H=V!H9V!$H=V!H;V!9H=V!H;V!.H=V!H9V!CH=V!hH9V!HH=V!MH9V!H=V!tH H?/H;GufDGHA L9AI|$D6X1HX[]A\A]A^A_Df.H=yU!L iU!$@H=yU!t@L iU!@L yU!@H=iU!D@H=yU!4@L iU!@L yU!@H=iU!@L yU!@H=iU!H|$8H9t2%7HHu8HHI|$@<H|$0H9t$6H_I|$H;aH|$(H9t6HHAD$PH|$ H9t<6HHH9TMt$LD:Ll$I9t?MEALMt$9HD$H1Lk3VLl$I9ImLM|$G9IH~'H-hS!AMt$A1L3&VAMt$E1AAMt$AAAAHD$6Ht$HI|$8Hl$@H9H}H5_!H9trH;-_!bH;-_!H;-_!H;-_!H;-_!tBH;-_!tYH;-_!t@H7AŅAE1Mt$AMt$AMt$AMt$}H= H5H?W25HuH H5H:%25HuHMt$g]Hd H5H81LLrKAY;5HKHH  H5ÌH91=L H5͌I8e1@LLAJAOff.ATUSHtRHFIHHSH51H>5tRH5H+5t0HHL[]A\7H H57H:0[]A\[HL]A\I[HL]A\)JfHyV!HH9u7;6Ht(HHHfo J@0fH@HH@@ H0H10Huf.ATUS'3Hp\!HtH9CXuH[]A\x.IHRH5\!H7HHt+HxH5*T!H9R2HtH\!HCX53HuH=q\!1FHHt@,H5L\!HL5RHmHuRf.ATUSH_HH1HHPPH|$H1HHSHLd$6HHS@ wS@MSH{0HL1H H|$H7H+Hu LCHAP0HH[]A\Hx4u%H5u3H=WL4HHtHH= H5!1H?G.H=#4H@USHHHSpPH{,HHSHH=I1*HHH HH[]AVAUAATLgULSHH@D$24HHSoCoK HLoS0Lt$HT$L)D$)T$0)L$ Dl$4+S(D$ C,рTMH|$H@1D$HD$74IH&HH+IHSLl$HxJL 0H5 LM~GDI~EtKI\$H.4uH5H@L[]A\A]A^fH2uHI\$f.HtKGTMNHEuMt5CD M^L˅MtC|I^*Li@1^L.L r H5[I9+E1I!L5BK!QI>QA^MvMt[1(IHtLL%DJ! A\$uII I<$uL% K! A\$uhI I<$uLL*ImmQH3_It$L-yQH= H5H?&+.I AIt$Lk-yXQH>HSA|.HQDf.ATUSH-H5W!HtH;FXuH[]A\)IH&QH5YW!H2HHt3HxH5N!H9Pp-Ht H-V!HEXH-HPH= W!1:AHHP@,H5V!HLE0PHmuPAVAUATUHoSHHD$ .IHQH=O!{/HHPf@0H@HLc@HT$ HLfo hH@HHC@s&QL/kLs LHHC _H+HLKLIq0L9xLb1L[HA@H8PMI?LL1L)F*IHP p*IHzPH LHU!I,$HOImpOHPPHHMk*IHN!H99N!H94N!H9/N! HY&Ņ_H5M!H@&H5M!H)&H5M!H&H5M!H%AL5vM!K4HD%IIuLF H5x1I: Lt$ @f.L'KH=F!T&HHKLXH@0fHxfo5PvLX@HL$ LH@It$h p0zt$ H|$HPH[]A\A]A^ýDf.Lt$ L1'YRK1Lt$ 8Lt$ )Lt$ Lt$ 볾Lt$ Lt$ Lt$ 뉾Lt$ Lt$ kLt$ I}H5C!H9%JH H5{1H:H=E!$HHJfLCHC0H{C HL$ HT$ fo%tHCIt$c0LC@H\$Lt$ Iu LH9tHCH5 K!H9H;K!H;J!H;J!H;J!tmH;J!tZH;J!tGH;J!t4H #Ņ&H+ILcH1AT$0ZPF<2(16IfAVAUATUSH@HFD$ gILl$HHIL"HnC!H9H-#HHJIfC0HKHLcfo )sHCC K0IVHK@H(HAvHC0LLt$ HsH1IHC L9$LLLT$ A~HDU(AAD M,EDL$ AEH@H[]A\A]A^ÐHڹHuTA~HC0H{HLHC L#HT$ LLeT$ AjG1HIvMLLD$APA@n"XZf.HCHL1HC06HC L&#H10HH\GE!L-:!DՀGI}GAmMuMtc1IHtTL%9! Al$uSI I<$uH=:!tL%:!Al$uOI I<$uLLlImFH+,GFIt$LUyFI QIt$L6cFff.AWAVAUL-@!ATUSHHBL9uHAHHD[]A\A]A^A_HALHIH AąuNHStLHLE1HHEAEt1H= HRH5g1H? H]AHoH ] HHM[AUH F!ATIHHUHnqSH`H HD$D$ H\$ H\$P1LL$(LD$oZYHl$H9PbHHD$HoHoP oX0H|$)L$ )T$0)\$@H9<ML$L-9?!M9H\$I$H{L9HHH^TL@H@0fLkL@@HL$ HxL@ It$LD$fo%nH@`0I,$:TH+u.H{HaLG0I9aL LKHA@t$H|$HXH[]A\A]f.H5I>!LMT$A^LHH=>!dIH]Hl$H\$H{L9uuHH==!HHHuHE0fLkHu@HL$ H}Lm It$LD$fo5mHEu0I,$ SfH5y=!wL[AHHH=M=!HHKH}H5;!H9H|$ Hu H|$H9t"DxUH|$ 4RHl$ML$L-HHBI|$H9I$H=:!HHH{HC0fIMfo jH{@IT$HuC H{LD$ HCK0DHmtrI,$t{t$ LGPHH[]A\A]@H59:!XIL$tDLLH=:!\IH1OLMHAQ0~MT$LAR0tH3 HHmOH HrHEvOOOfDAVAUATUHSHHD$ QHOIHCL%Z9!L9H}HH9HEIHIOIMHUMHsHxLD$ H+t/Hmt$ L]HL[]A\A]A^ILCHLMAP0LH7HSHLLHHH}L9H5p8!uvHMLHH=I8!IHH=18!IHIMIVHsHxLD$ H+'LMHEILMHAQ0t$ L`NL5 IH&L5 IH+MMMMAVAUATUHSHHD$ AHMIHCL%J7!L9uzH}HH9 HEIHMIMHUHsHxLD$ H+0Hm2t$ LsSHL[]A\A]A^LH@HSHLLHHH}L9upHEIH=u6!IHIT$HxLMLD$ IMHsH;LGLMtjHmtpt$ L>LH5 6!uHMtaLHH=5!5IH]H+LLKHAQ0LUHAR0L% I$H L% I$LLKfAWAVAUATUHSHHhH~HT$D$,H;=w Hf.qe#nf(1ҸfT mfV mf.Df.D$fTmf.mH;!IHK1H;!I,$IIL$LQ0M~KImI} 1p;!IHKH4I,$IH*KHpHT$HHt$HImIMELAP0MK\HHlKKIHSKHl$0Lt$,H-LHHj LHIwLHHMHLtt$,H|$&JML$MHHLLLL$pHLt$,H|$zJt$HL$HL)It$ HhL[]A\A]A^A_D$HIH9!IHI1H9!I/Iu M_LAS0MIImI} 19!IHIHmI,$IIcIHT$IGHHHD$ImIu I]LS0MEIHHIIHILt$0Hl$,LkHLH Ht$HLLHHILLt$,H|$cIML$ILHLLLL$HLt$,H|$HHL$t$8H5 cHHf.aWjf(1fT%)jfV%jAf.@DDf.DT$zRfT jf.jHvIHt$I|$GIT$LR03H:IHI|$1 lHI\3if.AW1AVAUIHH5dYATUSH(HD$HT$Hl$H+IH}H0!H9HH}HE  @L}0LeMt$L/HHHM2@EdAT$~LDDdHL9uAH=^/!D$!HH?HL`H@0fHxL`@HHL$IUfo _H@P X0 t$LzH\H(H[]A\A]A^A_f.EH=.!D$HHL{HC0fH{L{@HHL$IUfo t^HCC K0/ t$LHb1H5q H9FLLHH=.!D$HHEIuHxHT$ t$L_H+EHsH1V0H= H>fH7HIHgHI,$IZFMHH=a-!D$HH*FHxLHL$IUt$LML&HD$M}~HHDHUL`H1HL[@mLI+HC0HC LHT$LLt$L;EH+jELCH1AP0L}L Mcu8IEL)H9E(pLC1-PHuMA@LLT$ARl ZYbHڹH tE H+DLKH1AQ0ADT @@D 0LDDHL9LpE1Ƀ'CCOD[A~A^MIIM9uH@@L1HHC0nHC L^ fL}H(L}HLDD _H=! ?@'H=*!D$1HHBHhLd$LHLt$LBIuHLt$LkJBvBLL$LL$u7LL$O0MLL$AFHT 8MAF Bf.AW1IH b,!AVHHH^[AUATUSHxH LL$0LD$8HD$8H\$0e3Ld$0I9I|$H5'!H9NDH\$8H H{L5Q)!L9wL gH{HC a@|$  @ HkLS0LT$H}Y IHCH|$LMLD$A|(L A<;T {03 A<;=LI4(LL_{z~HL]UH9uAD$,M9LHHAizMyMR1TIH?H=!-!H=!-!H=!-!PH=!-!H=!-!H=!tx-!H=!tbL5! I I>tOAntIvLy?HSH 11H5KHRH9H=!L5!tAnI I>uLL4I,$=H+>HsH1V0(I iHJC ʃT$ *@Hk0Hl$HkH}IHt>LD$H|$LMA|(UH} ;HH݃|$upA8LP A;E1Ʌ|$KI4(e|$MHb|$H]A|(L> A:HLD$LL$L\$mL\$LL$LD$„LD$LL$L\$ L\$0LL$LD$AILD$ LD$h|${:AII9IyLD$LD$|$9ALm A:AH5!Ha9IvLH9H5 !L,.9H5!Lk9H5!L O9LD$LL$(LD$LL$|$7C Ht H=)#!H5"#!H)HHH?HHtH HtfD="!u/UH=֞ Ht H= h"!]{f.HHHHt$HD$HDHHHHKf.SH~HH5!H9HH[Df.ATL%!UHSHHH~L9u'HHuH{H+tAHH[]A\kLuHCt.HHLHHu2HSHD$HR0HD$H HP1H5BH9H1[]A\f.UHHHSHHt$D$*)H=!VHHHD$H{HT$HpH|$H/tt$H,HH[]HWR0ِUHHHSHHt$D$H=K!HHHD$H{HT$HpSH|$H/tt$HHH[]HWR0ِUHSH肭HHuHH1H=B1H+H[]AT1IHUH5JSH@HL$0HT$8D$BHT$8Ht$(LHT$0Ht$ LH=5!HHH=!HHHD$ HT$(H{HuLL$MD$HHHRH|$(H/uHOQ0H|$ H/uHwV0t$LCu61HH=AH HmH+tH@[]A\1Hmu LUHAR0H+uL[HAS01fUHHHSHHt$D$jnH=!HHKHD$H{HL$HUHp/H|$H/Jt$HdHH[]fSHHHߺH[f.SHgHHߺH[f.USHHRHGHh It HS8HlXH[]SHHHHH+uHCD$HP0D$f.>G{Hf[uD$aH|D$PHX H5 ?H8ZfHHHHHQ G(Hf.SH_Hc1u HH[ff.QH H HZÐPHfZff.QH6t H˗ HZH~ HZQHt H HZHN HZQH] Hg HZÐQH&M HG HZÐQH= H' HZÐQHu H˖ HZH HZQH Hז HZÐAWAVAUATIUHoSHHHH: Ho'IH HHCeHH=TEH}BHD:IMr H{x10HHiH=!E1LHL1:HIoLImD Ht Hmd Mt I,$C HH[]A\A]A^A_HCHHIH 1LHHHyH|$zHH E1L;t$}$C470HcH JDIH=9!E1LHL1VHILLQ LA I|$ |IH=]CIH 1H=EC1LHHfDHGHtHHétPHH1Zf.AWAVAUATUSHH( HH{HGH H Hk(D$HM-T$H< HE1HD$HH5K H{ HFH6HHHTLpHLIHv HHL$L1H'BHL9 M4E1HuIHJ|LOAH: H rEu 0IAFII9|A|$u)AELL$I~1LAHWH+H(L[]A\A]A^A_H5$AH tTH5AHAŅH5>HAŅuNH|$H5@HD$H|$H5@AhHD$XL H5,DI8$E1?|$A0IHuHSHR0 H|$H5W@HD$L+ H5CI:H+&LE1H- H5,CE1H}xLܐ H5CI;]HĐ H5CE1H;B`f.SHHHtH/tH{Ht H/4H[HGP0S1HH=C !HtSPHxHs @0PP[Ðf.QHw1HtH( Hf HZSHwH1ѣHtH(HCH[ATH G!yUSHHW,H$HsxIS(yH !LPxH {8HcS4HK HsDKPHLCP1ATUWH=wBH H[]A\fPH6ZH f.PHZHf.ATUSHG HH uP1L%!I<$t[It$HPHt HuA l$I HH H5=H:[]A\H L H5}BH9@f.SH!HH9FH#t[ÉH{:1U@f.SH@!HH9FwHt[ÉH{J1.@f.BUSQHNH; !u0LGLNEE9AÃA8yH HZ[] tFHH>uHU9@ƃ@@8u2Ā5H׌ HΌ ff.UHH=U !SHD$ ôHHtHT$ HuHxD$ HH[]@UHH= !SHD$ sHHtHT$ HuHx D$ HH[]@UH= !SQ1HHt1H@@Hk1HH HC0HC HHZ[]ÐAT1H 5!USHHHH\3HH- LD$Hl$ HD$H9HxH5x!H9PPHsH@HHrHL$$HHt#@ D@3H{0HLH H<$HH[]A\zHD$HxU1HH 3!SHHHn2HH2 LD$H\$tIHD$H9t0HxH5!H9H}Hp|HH[]HD$Hu1f.U1H v !SHHHH1HH- LD$Hl$HD$H9t;HxH5!H9HpH{qHi HH[]IHD$HEfU1H !SHHHH>1HH- LD$Hl$DHD$H9t;HxH5^!H9=HpH{8H HH[]話HD$HfAWAVAUATUHSHxH|$HD$8D$$dHHHL$81HHT$0H5j0H|$0HGoHt$(IHLl$(M~ 8SPH|$@LH|$ŅD1L|$8M LL$XH1LHHHHA0L\$`H1LIIII}AH|$Ht$HSHL$$HKHHH1HIIILT$(7Ht$(1HHM.MIMd!HtH-, HL$HUHL$HxH[]A\A]A^A_MGA .H56LIHtHyIH Lx L|$XH|$8H56IHtHCIHaLH LL$`H|$8H56}IHt H HHHp IHt$hH|$kH| H5A6H;11I/MOHL$LAQ0HL$I.M~HL$LAW0HL$ImMuHL$LAV0HL$wMA6API}HWLLHvH|$@B(H_SPH|$HD$Ld$fD$SI uAIAuLHL$JHL$HA H54H:1Ld$L% H54I<$Ld$11y@AUIATIUSH(H-A Hl$?H#HLD$1LH !HD,LHD$H9uNH\$H= IHH|$1ID$HI\$LHH([]A\A]HxH5(!H9Mf.Q芬HtHZDf.U1HH 3!SHHH~+HHB LD$D$H\$#HD$H9tgHxH5!H9H=&!衫HHnHt$HxHL$HVHut$H|$|DHH[]赫HD$HufDU1HH S!SHHH*HHr LD$D$H\$SHD$H9tgHxH5 H9H=V!ѪHHHt$HxHL$HVHu:t$H|$謵HH[]HD$HufDU1HH 3!SHHH)HH LD$D$H\$HD$H9ub|HD$HthH=!HHcHt$HxHL$HVHut$H|$9HH[]HxH5 H9t1DU1HH S!SHHH)HHҁ LD$D$H\$ HD$H9tgHxH5& H9 H= 1HHHt$HxHL$HVHut$H|$ HH[]EHD$HufDU1HH s!SHHH>(HH LD$D$H\$HD$H9tgHxH5V H9H= aHHNHt$HxHL$HVHut$H|$<$HH[]uHD$HufDU1HH !SHHHn'HH2 LD$D$H\$HD$H9tgHxH5 H9H= 葧HHHt$HxHL$HVHu t$H|$lHH[]襧HD$HuwfDU1HH !SHHH&HHb LD$D$H\$CtHD$H9tgHxH5 H9tH=F HH>Ht$HxHL$HVHut$H|$蜱HH[]զHD$HufDU1HH SHHH%HH~ LD$D$H\$sHD$H9tcHxH5 H9H=v HHHt$HxHL$HVHut$H|$̰uHH[] HD$HukH+aHKH1Q0fU1HH SHHH$HH} LD$D$H\$=HD$H9tcHxH5 H9&H= HHHt$HxHL$HVHut$H|$uHH[])HD$HuH+HKH1Q0fATIUSHD$ HH= HpHHIt$HxHL$ HU]t$ HQHH[]A\f.ATIUSHD$ hHmH=x HHHRIt$HxHL$ HUt$ HѮ!HH[]A\f.AUATIUHSHXHD$D$ ڣH1HHT$1HH5"H|$Hu!HLHHXH[]A\A]HWHD$D$ fo_2fo )HD$HHD$D$(L$8h-IHtrH=M ȢHHtlH?I9teIIt$H}Ll$(HKHT$ LD$ t$ H蒭GHmuHuH1V0/mH1I뒐AT1H UHHHSH>*HPHpz LL$LD$D$ H\$H\$GHD$H9HHt$ H0!HL$HT$(Ht$IH= ;HHHT$Ht$LD$ H|$ HJHVHwHxfH|$ H/H|$H/uLGAP0t$ H|$H8H[]HyH5 H98)f.U1HH SHHH H8Hs LL$LD$(D$ H\$HL$H9裛HD$HHHt$ HHL$HT$(Ht$述2H=p HH`HT$Ht$LD$ H|$ HJHVHwHxH|$ H/H|$H/t t$ H|$螥H8H[]LGAP0HyH5G H9,1DU1HH # SHHHH8Hr LL$LD$(D$ H\$^HL$H9SHD$HHHt$ H萯HL$HT$(Ht$oH= 蛙HHHT$Ht$LD$ H|$ HJHVHwHxH|$ H/qH|$H/t t$ H|$N3H8H[]LGAP0HyH5 H9,1DU1HH SHHHmH8H2q LL$LD$(H\$;HL$H9q HD$HHHt$ HHHL$HT$(Ht$'HT$HL$ HrHyHp HH|$ H/H|$H/H8[]U1HH SHHH}H8HBp LL$LD$(D$ H\$HL$H9?HD$HHHt$ HPHL$HT$(Ht$/{H= [HHHT$Ht$ HxHL$ HRHvH|$ H/pH|$H/Tt$ H|$%H8H[]ÐU1HH c SHHH]H(H"o LL$LD$H\$HL$H9HD$HHHt$H8fHL$HT$HgH= EHHH$HL$HxHRHqH|$H/H<$H/H(H[]U1HH C SHHH]H(H"n LL$LD$H\$LHL$H9xHD$H+HHt$H8HL$HT$HH= EHHH$HL$HxHRHqH|$H/H<$H/H(H[]UH HHSHH^HPH$m HD$D$H\$P1LL$@LD$HZYXHL$H9HD$H7HHt$(H(HL$HT$8Ht$ HL$HT$0Ht$H= HHVHt$ H|$(LL$ HL$LD$HVHwHIHxM@tH|$(H/TH|$ H/t3H|$H/uL_AS0t$ H|$詞HHH[]LWAR0HyH5R H9H|$(H/~H|$ H/01fU1HH SHHHH8Hrk LL$LD$(D$ H\$NHL$H9CHD$HHHt$ H耨HL$HT$(Ht$_H= 苒HHHT$Ht$LD$ H|$ HJHVHwHxH|$ H/H|$H/t t$ H|$>OH8H[]LGAP0HyH5 H9,1DU1HH SHHH]H8H"j LL$LD$(D$ H\$fHL$H9HD$HEHHt$ H0(HL$HT$(Ht$pH= ;HHHT$Ht$LD$ H|$ HJHVHwHxH|$ H/H|$H/t$ H|$H8H[]HyH5 H92vDf.U1HH  SHHH H8Hh LL$LD$(D$ H\$设HL$H9裐HD$HHHt$ HHL$HT$(Ht$迥H=p HHjHT$Ht$LD$ H|$ HJHVHwHxH|$ H/ H|$H/uLGAP0t$ H|$薚H8H[]HyH5I H9.1U1HH SHHHH8Hg LL$LD$(D$ H\$^HL$H9SHD$HHHt$ H萤HL$HT$(Ht$oH= 蛎HHHT$Ht$LD$ H|$ HJHVHwHxvH|$ H/^H|$H/uLGAP0t$ H|$FAH8H[]HyH5 H9.1U1HH 3 SHHHm H8H2f LL$LD$(D$ H\$HL$H9HD$HHHt$ H@HL$HT$(Ht$[H= KHHHT$Ht$LD$ H|$ HJHVHwHx膼H|$ H/H|$H/uLGAP0t$ H|$H8H[]HyH5 H9.T1U1HH SHHH H8Hd LL$LD$(D$ H\$辺HL$H9賌HD$HHHt$ HHL$HT$(Ht$ϡH= HHiHT$Ht$LD$ H|$ HJHVHwHx&H|$ H/%H|$H/t=t$ H|$讖H8H[]HyH5a H961LGAP0DU1HH S SHHH H8Hc LL$LD$(D$ H\$nHL$H9cHD$HHHt$ H蠠HL$HT$(Ht$H=0 諊HHHT$Ht$LD$ H|$ HJHVHwHxH|$ H/zH|$H/uLGAP0t$ H|$Vu H8H[]H+u LKHAQ01HyH5 H9f.U1HH SHHHm H8H2b LL$LD$(D$ H\$HL$H9HD$HHHt$ H@HL$HT$(Ht$-H= KHHHT$Ht$LD$ H|$ HJHVHwHx薺H|$ H/H|$H/uLGAP0t$ H|$hH8H[]HyH5 H9.&1AUIATIUSHH(HD$D$H1Ht$HLH)1Ht$HLH;` H= .IH`HT$Ht$HMI|$HD$HHvHLD$?H|$H/ZLl$Imu/MEL mMH0M9I}M]LA@t$H詒H(L[]A\A]1Ht$HH1yH= ]IHH|$HT$HMHD$HwHI|$HuLD$rH|$H/3HILL$HH|$H/uHWR0LA6I,$BI\$LE1S0,f.ATIUHSH0D$H1Ht$(HHH71Ht$ HLH= IHHNH= 1IHHD$ HT$(H}It$LL$LCHHHR\H|$(H/H|$ H/uHwV0t$Hߐu31LH=PH觹I,$bHmH0[]A\I,$u MT$LAR0HmL]HAS01ʐf.ATIUHSH D$ 襅H1Ht$HHH1Ht$HL͚H=~ HHHD$Ht$H}HKLD$ HPHv H|$H/GH|$H/t t$ H賏H H[]A\HOQ0fDATIUHSH D$ ńH1Ht$HHH1Ht$HLaH= HH$HD$Ht$H}HKLD$ HPHvٳH|$H/H|$H/t t$ HӎH H[]A\HOQ0fDATIUHSH D$ H0HHt$H1H'Hl$t|1Ht$HL H= 8HHHD$Ht$H}HKLD$ HPHv(H|$H/t'H|$H/t%t$ Hu4H H[]A\HWR0HOQ0H|$H/>Hl$HmWLEH1AP0@UHHH= SHD$ 耣HuHuHxHHT$ t$ HVu HH[]H+:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}argument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strinternal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)valid values for clamp are 0 or 1valid range for Emax is [0, MAX_EMAX]valid range for Emin is [MIN_EMIN, 0]valid range for prec is [1, MAX_PREC]argument must be a signal dictinternal error in context_setstatus_dictinternal error in context_settraps_dictinternal error in context_settraps_listinternal error in context_setstatus_listcontext attributes cannot be deletedoptional argument must be a contextcannot convert signaling NaN to floatoptional argument must be a dictformat specification exceeds internal limits of _decimalcannot convert Infinity to integerinternal error in flags_as_exceptioncannot convert NaN to integer ratiocannot convert Infinity to integer ratiooptional arg must be an integerinternal error in PyDec_ToIntegralExactinternal error in PyDec_ToIntegralValueinternal error in dec_mpd_qquantizeargument must be a tuple or list??;\ jНx P p w é@ ʩ  d0K p 06ch֬ QLݭ0@I\uHԮPn.$t9ɱd=iTPD4Yd!b0x4zPL(ط<'+/3 t!"""L##ϼ#߼($t$ %mh%&&#&&d' '0(p(V(e(t)|)))(*Nl++$,T,,q`-z-.<..E.,/l//X/0b0n 11Q1\229 3L333Y 4L4414b 5P555L6'6N47u7D88C89D9-99t99T:::Y8;x;;T;8<x<C<<pH==>k`>>(?l??^@@n@u0APAA 8 T 0 pD4Dp4|P`0 TpP\0d 8`(`x` h" %`'X*`,/H`13`50708`9D:;=@>dp?@AdB D!K!TP"PUl"pU"U"U"U$U % V|%W%@Y0&Z'@\D(0](^)0`)`*`<*`a`*a*Pb*b +b$+b<+bT+c+dh,o-`p-px.q/r0s81v1v2p{p2} 5P~60H7 7>Њ?P?`?p0@p@DAA  Ъ$ Ы` 0x P !@("P<"`"##а`#x# #P#p#$<$\$$ '`,'''0(`()0*P*p+0,8,к|--л. P.p.`/@//00`00 1P2 3`333` 40`444d5@55 `6p7X8 8p89X9`9P9p:ph:p: ;pL;;;` <L<<`< =\==,>t>@zRx $P FJ w?;*3$"D\+D fzRx  (BDA ABzRx  $"<@!A_zRx  *8BJH A(DPx (A ABBI zRx P${8T:BJH A(DP (D ABBA t2M8HD:BJH A(DP (D ABBA /M84:BJH A(DP (D ABBA ,M8$:BJH A(DP (D ABBA d)M88:BJH A(DP (D ABBA &M8BJH A(DP (D ABBA #H8d2BJH A(DP (D ABBA TM8(T BJH A(D@ (D ABBA zRx @$+8 BJH A(D@ (D ABBA tӛ+0jBDH G0  DABA zRx 0$-0PiBDH G0  DABA l{-<BHD G0d  DABE g CAB0/BDH G0_  DABA  F0 3BDH G0_  DABA <F(hAJI0l DAA zRx 0 5(8AJI0l DAA `5@BBB D(H0G@ 0D(A BBBA zRx @(W 6AtHݚS0BDH G0s  AABA (BDH s ABA  084BDH G0s  AABA T(BDH s ABA e(LBDH s ABA 8( BDH s ABA ( (@ BDH s ABA hޙ( ,BHD w ABA 0 BHD G0w  AABA |X TBJI A(A0DP 0D(A BBBH  0D(A BBBC zRx P(` zBIK H(A0DhcpRhA` 0D(A BBBP  0D(A BBBH zRx `($8 T@ADD0tAAJ 0t X^BIH D`  AABA zRx `$8 BJH A(DP (D ABBA X uH8, BJH A(DP (D ABBA  mH8| BJH A(DP (D ABBA  eH8 KBJH A(DP (D ABBA H ],8 BJH A(DP (D ABBA  9H8l @KBJH A(DP (D ABBA  1,8 @:BJH A(DP (D ABBA 8 M8 0:BJH A(DP (D ABBA  M8\ :BJH A(DP (D ABBA  M8 :BJH A(DP (D ABBA ( M8 BJH A(DP (D ABBA x H8L`KBJH A(DP (D ABBA  ,8`BJH A(DP (D ABBA ՘H8KBJH A(DP (D ABBA h͘,8<RBJH A(DP (D ABBG ,0BDD K0  DABA  80(BDD K0  DABA  }8$AJI0tDA yA0XD/BDH G0_  DABA t rF0,/BDH G0_  DABA  pF0/BDH G0_  DABA  nF00/BDH G0_  DABA L lF0x3BDH G0_  DABA  jF03BDH G0_  DABA  hF0/BDH G0_  DABA $fF0P /BDH G0_  DABA ldF0!/BDH G0_  DABA bF$OAHA BAAd"#A]C8#A]sCh#A]0GC$/AAH [DAL!BBB B(A0A8G 8D0A(B BBBC $zRx ,a LpAD C EE zRx   DCH#BEB B(A0C8G 8D0A(B BBBO $zRx , ,A\HD8* BBB B(A0A8A@ 8D0A(B BBBA zRx @( 2WHy I 2$؍82L`2 t֙2ATx$A^A]zRx [hAJp(AY A L<(AY A L\A]A]˘xA]l(AY A L|A]Ds,01 H@\BBB B(D0E8GP 8D0A(B BBBA zRx P(n(0EAGA ^ AAA zRx   8 0xBBA A(D00 (C ABBA <\1BBB A(A0O (A BBBA zRx 0(aP3:BBB A(D0D@HDPAXM`Q@[ 0A(A BBBA $<uAID0aDAPdЗGGMGDGDGDGDGDGDn6gNH,CBBB B(A0A8G` 8D0A(B BBBA zRx `(T8Ai E 6 5As0|2BAD D0  DABA ޗ(3AAG  AAA (1((AflT(AfH4OH A Pl=DtBMA JbDAAPG AABzRx $-:$44D  K x H _ A + p\6kAJ  DA (  6MAJ e AA ` 5 6aAJ a AA 6dAJ a AA <(D7qADG  AAC L AAB DGAhdAJlAJT7#D^l7DMt7DM|7DM7DM( ږmBAH ^AB(< `7AAD0 AAB ,h BAA  ABA   BAi A t) @BAi A )h !`8 BBB B(J0A8DuHMMGGSG 8A0A(B BBBP $zRx ,ZL!BBAA O ABE W DBA A GBE AGB! AAB( "LDAA C AAA `ʕ`"BVK{ A $|"LAKD0vDA$"LAKD0vDAPs$"ȍOAHA BAA(#@BBAA [ ABA D")p0\#BJA T0  DABA xQU(#XAMQ0Q AAA @f0(#AJT0` AAA VG($$AJT0` AAA ]G0d$ABAA K0  DABA \IL$ ,BBB B(A0D8D 8D0A(B BBBA $zRx ,$8%BYAAG JDAt 8t%BED A(DP (A ABBA #Z[%AO@%ABBE E(D0Gp 0D(A BBBC zRx p(!(X&TDBAA c ABE %id| CBA X&DrBBB A(E0G@  0D(A BBBF K 0D(A BBBJ Q58'H;\IA A(C0> (F ABBA zRx 0$O('hAMQ0 DAA  !%H('AMQ0 DAA `!-H((AMQ0 DAA !5H(D(AMQ0 DAA !=H((AMQ0 DAA  "EH((8AMQ0 DAA `"MH()ȔAMQ0 DAA "UH(D)XAMQ0 DAA "]1()AMQ0 DAA  #N1,)HBDA D0 DAB$;,*TsBDA D0` DAB %,L*sBDA D0` DABd%8*̖_BBD D(Da (D ABBA zRx (A0+EBJJ Kp  DABA zRx p$k'Dl+GBKB J(H0DK 0D(A BBBA zRx ('P+KBBB A(A0Dp 0D(A BBBB fxQLxAp$єHT,hNBBB I(A0A8D@Z 8D0A(B BBBA (,lIAMQP DAA zRx P ʔ(,`VAMQP DAA `/(<-IAMQP DAA w(|-EAMQP DAA ܕ(-KAMQP DAA  <(-KAMQP DAA `$<.AMQPAA $x.tAMQPDAp$.XAMQ@DAzRx @ ݗ$ /AMQ@DA\I4H/ĠANNhZpRhA` DAA zRx ` (/ KAMQP DAA (/AAMQP DAA T~(00,IAMQP DAA (p0 (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. C decimal arithmetic moduleContext(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. P'"[ 3@'"f@&"s.`59x@9@8979709.,,`97!C"P@C" B"B" B"pA"@`A" A"@"p @"@ ?"p`?" ?"@>">"@ >".="5@="@ ="<"G`<"<"O@;"W`;"`@;"l:"u@:"@9"8"``6" 6"0`5"4"`4"4"3"0@3"P2"2"p 2"1"`1"1" 0"0`0"@0"%`/"2`/">/"C."R`."_P."m-"{@-",","@,","P+"`+"+"н*"@*"0,*"@)"Ў  0sЎ`)"Pm("$'">C|"{"{"@ z"p@y"w"0Uw"u"0U`t"Мs"@r" r"q"G@p"@p"Oo"`P`n"l]j"h"Pg" g"f"p f"Pe"0@e"d"Ї@d" c"pb"Дa"H``a" `"Q0``"_"^"2` ^">0\"C`\"R@Y"mP`W"{P`S"P`Q"0O"@ N"M" M"PL"`J"I"P`G"3@E"[D"MC"dq Ѓ|0`@f0d TLpHac c XLI8> ;3UMld{@ @P}""x"DP,`"p, "&`+pp8F}"@" ";46h,I"`1""@"sl}dc9eb51c96f277f34c5a81a72f032b5239a980.debug.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.dynamic.got.plt.data.bss.gnu_debuglink $oX( HH00xx 8o6%6%Eo''PTP'P'<^Bhchc(httctt n00wPPD}   @@ \ @@6"""r" " %"% ~ " 44